Home
Class 12
MATHS
Evaluate lim(x to 0) (k^([x]) - 1- |x| ...

Evaluate `lim_(x to 0) (k^([x]) - 1- |x| In K)/(x^(2)) , k gt 0`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2) (Ink)^(2)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If lim_(xto0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

lim_(x->1 (k^2/logx -k^2/(x-1))

Statement -1 : lim_( x to 0) (sin x)/x exists ,. Statement -2 : |x| is differentiable at x=0 Statement -3 : If lim_(x to 0) (tan kx)/(sin 5x) = 3 , then k = 15

The value of k for which f(x)= {((1-cos 2x )/(x^2 )", " x ne 0 ),(k ", "x=0):} continuous at x=0, is :