Home
Class 12
MATHS
The position vector of A,B,C are (hati+2...

The position vector of A,B,C are `(hati+2hatj+3hatk),(-2hati+3hatj+5hatk)` and (`7hati-hatk`) respectively. Prove that A,B and C are collinear.

Text Solution

AI Generated Solution

To prove that points A, B, and C are collinear, we will find the position vectors of points A, B, and C, then calculate the vectors AB and BC, and finally check if these vectors are scalar multiples of each other. ### Step-by-Step Solution: 1. **Identify the Position Vectors:** - The position vector of point A is given as: \[ \vec{A} = \hat{i} + 2\hat{j} + 3\hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Position vectors of four points A,B,C,D are 4hati +5hatj+hatk,-(hatj+hatk),3hati+9hatj+4hatk and 4(-hati+hatj+hatk) respectively . Prove that they are coplanar.

The position vectors of the points A,B, and C are hati+2hatj-hatk, hati+hatj+hatk , and 2hati+3hatj+2hatk respectively. If A is chosen as the origin, then the position vectors B and C are

The position vectors of the points A,B and C are hati+2hatj-hatk,hati+hatj+hatk and 2hati+3hatj+2hatk , respectively. If A is chosen as the origin, then the position vectors of B and C are

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

If the position vectors of the three points A,B,C are 2hati+4hatj-hatk, hati+2hatj-3hatk and 3hati+hatj+2hatk respectively, find a vector perpendicular to the plane ABC.

The position vectors of points A,B and C are hati+hatj,hati + 5hatj -hatk and 2hati + 3hatj + 5hatk , respectively the greatest angle of triangle ABC is