Home
Class 12
MATHS
If A,B and C are the vertices of a trian...

If A,B and C are the vertices of a triangle with position vectors `vec(a) , vec(b) ` and `vec(c )` respectively and G is the centroid of `Delta ABC`, then `vec( GA) + vec( GB ) + vec( GC )` is equal to

Text Solution

Verified by Experts

Let `veca,vecb` and `vecc` be the position vectors of the vertices A,B and C of a triangle ABC, respectively. Then the position vector of the centroid G is `(veca+vecb+vecc)/(3)`
Now `GvecA+GvecB+GvecC`
`=veca-((veca+vecb+vecc)/(3))+vecb((veca+vecb+vecc)/(3))+vecc((veca+vecb+vecc)/(3))`
`=(veca+vecb+vecc)-(veca+vecb+vecc)=vec0`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G denotes the centroid of Delta \ A B C ,\ then write the value of vec (G A) + vec (G B)+ vec (G C)dot

If O A B C is a tetrahedron where O is the orogin anf A ,B ,a n dC are the other three vertices with position vectors, vec a , vec b ,a n d vec c respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector (a^2( vec bxx vec c)+b^2( vec cxx vec a)+c^2( vec axx vec b))/(2[ vec a vec b vec c]) .

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

if G is the centroid of triangleABC such that vec(GB) and vec(GC) are inclined at on obtuse angle, then

If the vectors vec(a) + vec(b), vec(b) + vec(c) and vec(c) + vec(a) are coplanar, then prove that the vectors vec(a), vec(b) and vec(c) are also coplanar.

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to