Home
Class 12
MATHS
If vecp is a unti vector and (vecy-vecp)...

If `vecp` is a unti vector and `(vecy-vecp).(vecy+vecp)=8`, then find `|vecy|`

Text Solution

AI Generated Solution

To solve the problem, we start with the given equation: \[ (\vec{y} - \vec{p}) \cdot (\vec{y} + \vec{p}) = 8 \] ### Step 1: Expand the dot product Using the distributive property of the dot product, we can expand the left-hand side: ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

if vecP +vecQ = vecP -vecQ , then

if vecr.veci=vecr.vecj=vecr.veck and|vecr|= 3, "then find vector" vecr .

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

If a vector vecr of magnitude 3sqrt6 is directed along the bisector of the angle between the vectors veca =7veci-4vecj -4veck and vecb = -2veci- vecj+ 2veck , then vecr is equal to

STATEMENT-1: If veca,vecb,vecc , are unit vectors such that veca+vecb+vecc=0 and veca.vecb+vecb.vecc+vecc.veca=-(3)/(2) . STATEMENT-2 : (vecx+vecy)^(2)=|vecx|^(2)+|vecy|^(2)+2(vecx.vecy) .

Given two orthogonal vectors vecA and vecB each of length unity. Let vecP be the vector satisfying the equation vecP xxvecB=vecA-vecP . then vecP is equal to

For any two vectors vecp and vecq , show that |vecp.vecq| le|vecp||vecq| .

Given two orthogonal vectors vecA and vecB each of length unity. Let vecP be the vector satisfying the equation vecP xxvecB=vecA-vecP . then (vecP xx vecB ) xx vecB is equal to

Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb= mu vecp, vecb.vecq=0 and |vecb|^(2) = 1 where mu is a sclar. Then |(veca.vecq) vecp-(vecp.vecq)veca| is equal to (a) 2|vecpvecq| (b) (1//2)|vecp.vecq| (c) |vecpxxvecq| (d) |vecp.vecq|