Home
Class 12
MATHS
Prove that the area of the parallelogram...

Prove that the area of the parallelogram with diagonal `veca` and `vecb` is `(1)/(2)|vecaxxvecb|`

Text Solution

Verified by Experts

Let ABCD is a parallelogram with A as the origin. Let the position vector of B and D be `vecp` and `vecq` respectively. Then
`vec(AB)=vecp" and " vec(AD)=vecq`
But `vec(BC)=vec(AD)` Therefore `vec(BC)=vecq`
By triangle law of addition
`vec(AB)+vec(BC)=vec(AC)`

`vecp+vecq=vec(AC)`
`vecp+vecq=veca" "`.......(i)
`vec(BD)`=postion vector of D-positon vector of B.
`rArr " " vecb=vecq-vecp" "` .......(ii)
Adding (i) and (ii), we get
`2vecq=veca+vecb rArr vecq=(1)/(2)(veca+vecb)`
Subtracting (ii) from (i), we get
`2vecp=veca-vecb rArr vecp=(1)/(2)(veca-vecb)`
Now `vecpxxvecq=(1)/(2)(veca-vecb)xx(1)/(2)(veca+vecb)`
`rArr vecpxxvecq=(1)/(4)[(veca-vecb)xx(veca+vecb)]`
`rArr vecpxxvecq=(1)/(4)[vecaxxveca+vecaxxvecb-vecbxxveca-vecbxxvecb]`
`rArr " "vecpxxvecq=(1)/(4)[vecaxxvecb+vecaxxvecb]`
`rArr " " vecpxxvecq=(1)/(2)(vecaxxvecb)`
So, the area of parallelogram ABCD `=|vecpxxvecq|=(1)/(2)|vecaxxvecb|`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Show that area of the parallelogram whose diagonals are given by veca and vecb is |vecaxxvecb|/2 Also, find the area of the parallelogram whose diagonals are 2i -j+k and i +3j - k.

Given two vectors veca= -hati +hatj + 2hatk and vecb =- hati - 2 hatj -hatk Find a. vecaxxvecb then use this to find the area of the triangle. b. The area of the parallelogram c. The area of a paralleogram whose diagonals are 2 veca and 4vecb

The length of the longer diagonal of the parallelogram constructed on 5veca + 2vecb and veca - 3vecb, if it is given that |veca|=2sqrt2, |vecb|=3 and veca. Vecb= pi/4 is

The length of the longer diagonal of the parallelogram constructed on 5veca + 2vecb and veca - 3vecb, if it is given that |veca|=2sqrt2, |vecb|=3 and veca. Vecb= pi/4 is

Show that the components of vecb parallel to veca and perpendicular to it are ((veca.vecb)veca)/veca^2 and ((vecaxxvecb)veca))/a^2 respectively.

If theta is the angle between unit vectors veca and vecb then sin(theta/2) is (A) 1/2|veca-vecb| (B) 1/2|veca+vecb| (C) 1/2|vecaxxvecb| (D) 1/sqrt(2)sqrt(1-veca.vecb)

If veca and vecb are two such that |veca|=5, |vecb|=4 and |veca.vecb|=10 , find the angle between veca and vecb and hence find |vecaxxvecb|

Find veca.vecb if |veca|=2, |vecb|=5,and |vecaxxvecb|=8

The value of the expression |vecaxxvecb|^(2)+(veca.vecb)^(2) is….. .

If a,b are the magnitudes of vectors veca & vecb and veca.vecb=0 the value of |vecaxxvecb| is