Home
Class 12
MATHS
If veca and vecb are any two vectors , t...

If `veca` and `vecb` are any two vectors , then prove that `|vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}|` or `|vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2)` (This is also known as Lagrange identily)

Text Solution

Verified by Experts

We have,
Here `|vecaxxvecb|=|veca||vecb|sintheta`
`:. " " |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2) sin^(2)theta`
`rArr " " |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)(1-cos^(2)theta)`
`rArr " " |vecaxxvecb|^(2)=|veca^(2)||vecb|^(2)-|veca|^(2)|vecb|^(2)cos^(2)theta`
`rArr " " |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(|veca||vecb|costheta)^(2)`
`rArr " " |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)`
`|vecaxx vecb|^(2)=|{:(|veca|^(2),veca.vecb),(veca.vecb,|vecb|^(2)):}|`
`=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}|`
Hence `|vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)`
`rArr |veca.vecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2)` proved
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Prove that (vecaxxvecb)^(2)= |(veca.veca" "veca.vecb),(veca.vecb" "vecb.vecb)|

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

IF veca and vecb re two vectors show that |vecaxxvecb|^2=a^2b^2-(veca.vecb)^2

[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

If |vecaxxvecb|=2,|veca.vecb|=2 , then |veca|^(2)|vecb|^(2) is equal to

If |vecaxxvecb|^(2)+(veca.vecb)^(2)=144and|veca|=4,"then "|vecb| is equal to ……..

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If |vecaxxvecb|^(2)+|veca.vecb|^(2)=144and|veca|=4,"then "|vecb| is equal to ……..