Home
Class 12
MATHS
If veca,vecb,vecc are coplanar vectors t...

If `veca,vecb,vecc` are coplanar vectors then find value of `[veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]`

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of the scalar triple product of the vectors \(\vec{a} - \vec{b} + 2\vec{c}\), \(\vec{b} - \vec{c} + 2\vec{a}\), and \(\vec{a} + 2\vec{b} - \vec{c}\). ### Step-by-Step Solution: 1. **Identify the Vectors**: Let: \[ \vec{u} = \vec{a} - \vec{b} + 2\vec{c} ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca,vecb, vecc are unit coplanar vectors then the scalar triple product [2veca-vecb, 2vecb-c ,vec2c-veca] is equal to (A) 0 (B) 1 (C) -sqrt(3) (D) sqrt(3)

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecb,vecc are coplanar vectors , then show that |{:(veca,vecb,vecc),(veca*veca,veca*vecb,veca*vecc),(vecb*veca,vecb*vecb,vecb*vecc):}|=vec0

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.