Home
Class 12
MATHS
Solve for vec x,vecx xx vec b=veca, wher...

Solve for `vec x,vecx xx vec b=veca`, where `veca,vecb` are two given vectors such that `veca` is perpendicular to `vecb`.

Text Solution

Verified by Experts

`vec x xxvec b=veca` where `veca` bot `vecb` i.e., `veca.vecb=0` since `veca,vecb,vecaxxvecb`are three non-coplanar vectors, we can express `vec x` as a linear combination of these vectors.
`vecx=lambdaveca+muvecb+v(vecaxxvecb)`
`:. {lamdaveca+muvecb+v(vecaxxvecb)}xxvecb=veca`
`rArr lambda(vecaxxvecb)+mu(vecbxxvecb)+v(vecaxxvecb)xxvecb=veca`
`rArr lambda(vecaxxvecb)+v{(veca.xxvec b)vecb-(vecb.vecb)veca}=veca`
`rArr lambda(vecaxxvecb)-v|vecb|^(2)veca=veca+0(vecaxxvecb)`
Since `veca` and `vecaxxvecb` are non-collinear vectors equating cor=efficient of `vecaxxvecb` and `veca`on both sides we get,
`lambda=0" "-v|vecb|^(2)=1`
`rArr lambda=0" " v-(1)/(b^(2))," " {|vecb|^(2)=b," say"}`
With these values, our expression becomes
`x=-(1)/(b^(2))(vecaxxvecb)+muvecb`,where `mu` is an arbitrary scalar.
Comaring the above equation with `vecr=veca+tvecb`, we can say, geometrically that the points whose position vector `-(1)/(b^(2))(vecaxxvecb)` and is parallel to the vector `vecb`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Solve: vecrxxvecb=veca, where veca and vecb are given vectors such that veca.vecb=0 .

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If (veca xx vecb)xx vec c=veca xx (vecb xx vec c) , where veca, vecb and vec c are any three vectors such that veca*vecb ne 0, vecb*vec c ne 0 , then veca and vec c are :

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Angle between vectors veca and vecb " where " veca,vecb and vecc are unit vectors satisfying veca + vecb + sqrt3 vecc = vec0 is

Given vec(a) is perpendicular to vecb+vecc , vecb is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|

Let veca,vecb and vecc be three vectors such that |veca |=sqrt(3),|vec b|=5 , vec b .vec c = 10 and the angle between vec b and vec c is pi/3, if vec a is perpendicular to the vector vec b xx vec c, then | veca xx (vecbxxvecc)| is equal to __________.