Home
Class 12
MATHS
If veca,vecb,vec c,vecd are the position...

If `veca,vecb,vec c,vecd` are the position vectors of the verticles of a cyclic quadrilateral ABCd prove that
`(|vecaxxvecb+vecbxxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvec c+veccxxvecd+vecd xxvecb|)/((vecb-vecc).(vecd-vecc))=0`

Text Solution

Verified by Experts

Consider `(|vecaxxvecb+vecbxxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))`
We have,
`(veca-vecd)xx(vecb-veca)`
`=vecaxxvecb-vecaxxveca-vecd xxvecb+vecd xxveca`
`=vecaxxvecb+vecbxxvecd+vecd xxveca`
`:. (|vecaxxvecb+vecbxxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))=(|(veca-vecd)xx(vecb-veca)|)/((vecb-veca).(vecd-veca))`
`=(|veca-vecd||vecb-veca| sinA)/(|vecb-veca||vecd-veca|cos A)=tanA`
Again, `(|vecbxxvec c+vecaxxvecd+vecd xxvecb|)/((vecb-vecc).(vecd-vecc))=(|(vecb-vecc)xx(vecc-vecd)|)/((vecb-vecc):(vecd-vecc))`
`=(|vecb-vecc||vecc-vecdsinC)/(|vecb-vecc||vecd-vecc|cosC)=tanC`
in a cyclic quadrilateral `A+C=pi rArrA=pi-C`
`rArr tanA=tan(pi-C)`
`rArr tanA=-tanC`
`rArr tanA+tanC=0`
`rArr (|vecaxxvecb+vecbxxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvec c+veccxxvecd+vecd xxvecd|)/((vecb-vecc).(vecd-vecc))=0`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc and vecd are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that (|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd+vecd xx vecb|)/((vecb-vecc).(vecd-vecc))

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

Show that: (veca-vecd)xx(vecb-vecc)+(vecb-vecd)xx(vecc-veca)+(vecc-vecd)xx(veca-vecb) is independent of vecd .

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0