Home
Class 12
MATHS
veca,vecb,vecc are three non-coplanar su...

`veca,vecb,vecc` are three non-coplanar such that `veca + vecb + vecc = alpha vecd` and `vecb + vecc + vecd = beta veca`, then `veca + vecb + vecc + vecd` is equal to:

A

`alphaveca`

B

`betavecb`

C

0

D

`(alpha+beta)vecc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations involving vectors: 1. **Given Equations:** \[ \vec{a} + \vec{b} + \vec{c} = \alpha \vec{d} \quad \text{(1)} \] \[ \vec{b} + \vec{c} + \vec{d} = \beta \vec{a} \quad \text{(2)} \] 2. **Expressing \(\vec{d}\) from Equation (1):** From equation (1), we can express \(\vec{d}\) as: \[ \vec{d} = \frac{\vec{a} + \vec{b} + \vec{c}}{\alpha} \quad \text{(3)} \] 3. **Substituting \(\vec{d}\) in Equation (2):** Substitute equation (3) into equation (2): \[ \vec{b} + \vec{c} + \frac{\vec{a} + \vec{b} + \vec{c}}{\alpha} = \beta \vec{a} \] 4. **Combining Terms:** Rearranging the left-hand side: \[ \vec{b} + \vec{c} + \frac{\vec{a}}{\alpha} + \frac{\vec{b}}{\alpha} + \frac{\vec{c}}{\alpha} = \beta \vec{a} \] This simplifies to: \[ \left(1 + \frac{1}{\alpha}\right) \vec{b} + \left(1 + \frac{1}{\alpha}\right) \vec{c} + \frac{1}{\alpha} \vec{a} = \beta \vec{a} \] 5. **Grouping Coefficients:** We can express this as: \[ (1 + \frac{1}{\alpha}) \vec{b} + (1 + \frac{1}{\alpha}) \vec{c} + \left(\frac{1}{\alpha} - \beta\right) \vec{a} = 0 \] 6. **Setting Coefficients to Zero:** Since \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar, the coefficients must equal zero: \[ 1 + \frac{1}{\alpha} = 0 \quad \text{(4)} \] \[ \frac{1}{\alpha} - \beta = 0 \quad \text{(5)} \] 7. **Solving for \(\alpha\):** From equation (4): \[ \frac{1}{\alpha} = -1 \implies \alpha = -1 \] 8. **Finding \(\beta\):** Substitute \(\alpha = -1\) into equation (5): \[ \frac{1}{-1} - \beta = 0 \implies -1 - \beta = 0 \implies \beta = -1 \] 9. **Substituting Back:** Substitute \(\alpha\) back into equation (1): \[ \vec{a} + \vec{b} + \vec{c} = -\vec{d} \] Thus, \[ \vec{a} + \vec{b} + \vec{c} + \vec{d} = 0 \] 10. **Final Result:** Therefore, we conclude that: \[ \vec{a} + \vec{b} + \vec{c} + \vec{d} = \vec{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc = 0 and lambda = veca.vecb + vecb.vecc+vecc.veca and d = veca xx vecb + vecb xx vecc + vecc xx veca , then (lambda,vecd) is

Let veca,vecb,vecc be three non coplanar and vecd be a vector which is perpendicular to veca + vecb + vecc . If vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb the-

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. If a and b are position vectors of A and B respectively the position v...

    Text Solution

    |

  2. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  3. veca,vecb,vecc are three non-coplanar such that veca + vecb + vecc = a...

    Text Solution

    |

  4. The position vector of three points are 2veca-vecb+3vecc, veca-2vecb+l...

    Text Solution

    |

  5. Let a,b,c be three distinct positive real numbers. If vecp,vecq,vecr l...

    Text Solution

    |

  6. Let veca and vecb are unit vectors inclined at an angle alpha to each ...

    Text Solution

    |

  7. A unit vector in the xy-plane that makes an angle of pi/4 with the vec...

    Text Solution

    |

  8. The vectors 2hati-lamdahatj+3lamdahatk and (1+lamda)hati-2lamdahatj+ha...

    Text Solution

    |

  9. Let veca,vecb and vecc are three vectors such that |veca|=3, |vecb|=3,...

    Text Solution

    |

  10. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |

  11. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  12. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  13. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  14. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  15. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  16. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  17. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  18. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  19. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  20. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |