Home
Class 12
MATHS
The position vector of three points are ...

The position vector of three points are `2veca-vecb+3vecc`, `veca-2vecb+lambdavecc` and `muveca-5vecb` where `veca,vecb,vecc` are non coplanar vectors. The points are collinear when

A

`lambda=-2, mu=(9)/(4)`

B

`lambda=(-9)/(4), mu=2`

C

`lambda=(9)/(4), mu=-2`

D

`lambda=2, mu=-2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( \lambda \) and \( \mu \) for which the points represented by the position vectors \( \vec{p} = 2\vec{a} - \vec{b} + 3\vec{c} \), \( \vec{q} = \vec{a} - 2\vec{b} + \lambda \vec{c} \), and \( \vec{r} = \mu \vec{a} - 5\vec{b} \) are collinear, we follow these steps: ### Step 1: Define the Position Vectors Let: - \( \vec{p} = 2\vec{a} - \vec{b} + 3\vec{c} \) - \( \vec{q} = \vec{a} - 2\vec{b} + \lambda \vec{c} \) - \( \vec{r} = \mu \vec{a} - 5\vec{b} \) ### Step 2: Establish the Condition for Collinearity The points are collinear if the vector \( \vec{p} - \vec{q} \) is parallel to the vector \( \vec{q} - \vec{r} \). This can be expressed mathematically as: \[ \vec{p} - \vec{q} = k(\vec{q} - \vec{r}) \] for some scalar \( k \). ### Step 3: Calculate \( \vec{p} - \vec{q} \) \[ \vec{p} - \vec{q} = (2\vec{a} - \vec{b} + 3\vec{c}) - (\vec{a} - 2\vec{b} + \lambda \vec{c}) \] \[ = (2\vec{a} - \vec{a}) + (-\vec{b} + 2\vec{b}) + (3\vec{c} - \lambda \vec{c}) \] \[ = \vec{a} + \vec{b} + (3 - \lambda)\vec{c} \] ### Step 4: Calculate \( \vec{q} - \vec{r} \) \[ \vec{q} - \vec{r} = (\vec{a} - 2\vec{b} + \lambda \vec{c}) - (\mu \vec{a} - 5\vec{b}) \] \[ = (\vec{a} - \mu \vec{a}) + (-2\vec{b} + 5\vec{b}) + \lambda \vec{c} \] \[ = (1 - \mu)\vec{a} + 3\vec{b} + \lambda \vec{c} \] ### Step 5: Set Up the Equation From the collinearity condition: \[ \vec{a} + \vec{b} + (3 - \lambda)\vec{c} = k((1 - \mu)\vec{a} + 3\vec{b} + \lambda \vec{c}) \] ### Step 6: Compare Coefficients By comparing coefficients of \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \): 1. Coefficient of \( \vec{a} \): \[ 1 = k(1 - \mu) \quad \text{(1)} \] 2. Coefficient of \( \vec{b} \): \[ 1 = 3k \quad \text{(2)} \] 3. Coefficient of \( \vec{c} \): \[ 3 - \lambda = k\lambda \quad \text{(3)} \] ### Step 7: Solve the Equations From equation (2): \[ k = \frac{1}{3} \] Substituting \( k \) into equation (1): \[ 1 = \frac{1}{3}(1 - \mu) \implies 1 - \mu = 3 \implies \mu = -2 \] Substituting \( k \) into equation (3): \[ 3 - \lambda = \frac{1}{3}\lambda \] Multiplying through by 3: \[ 9 - 3\lambda = \lambda \implies 9 = 4\lambda \implies \lambda = \frac{9}{4} \] ### Final Answer The values of \( \lambda \) and \( \mu \) for which the points are collinear are: \[ \lambda = \frac{9}{4}, \quad \mu = -2 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Examine whether the following vectors from a linearly dependent or independent set of vector: veca-3vecb+2vecc, veca-9vecb-vecc,3veca+2vecb-vecc where veca,vecb,vecc are non zero non coplanar vectors

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

Show that points with position vectors 2veca-2vecb+3vecc,-2veca+3vecb-vecc and 6veca-7vecb+7vecc are collinear. It is given that vectors veca,vecb and vecc and non-coplanar.

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  2. veca,vecb,vecc are three non-coplanar such that veca + vecb + vecc = a...

    Text Solution

    |

  3. The position vector of three points are 2veca-vecb+3vecc, veca-2vecb+l...

    Text Solution

    |

  4. Let a,b,c be three distinct positive real numbers. If vecp,vecq,vecr l...

    Text Solution

    |

  5. Let veca and vecb are unit vectors inclined at an angle alpha to each ...

    Text Solution

    |

  6. A unit vector in the xy-plane that makes an angle of pi/4 with the vec...

    Text Solution

    |

  7. The vectors 2hati-lamdahatj+3lamdahatk and (1+lamda)hati-2lamdahatj+ha...

    Text Solution

    |

  8. Let veca,vecb and vecc are three vectors such that |veca|=3, |vecb|=3,...

    Text Solution

    |

  9. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |

  10. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  11. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  12. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  13. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  14. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  15. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  16. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  17. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  18. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  19. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  20. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |