Home
Class 12
MATHS
Let veca and vecb are unit vectors incli...

Let `veca` and `vecb` are unit vectors inclined at an angle `alpha` to each other , if `|veca+vecb| lt 1` then

A

`alpha=(pi)/(2)`

B

`alpha lt (pi)/(3)`

C

`alpha gt (2pi)/(3)`

D

`(pi)/(3) lt alpha lt (2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions about the unit vectors \(\vec{a}\) and \(\vec{b}\) and derive the possible values for the angle \(\alpha\) between them. ### Step-by-Step Solution: 1. **Understanding the Given Information**: - \(\vec{a}\) and \(\vec{b}\) are unit vectors, which means: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 \] - The angle between \(\vec{a}\) and \(\vec{b}\) is \(\alpha\). - We are given that: \[ |\vec{a} + \vec{b}| < 1 \] 2. **Squaring Both Sides**: - To simplify the expression, we square both sides: \[ |\vec{a} + \vec{b}|^2 < 1^2 \] - This can be rewritten using the dot product: \[ (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) < 1 \] 3. **Expanding the Dot Product**: - Expanding the left-hand side: \[ \vec{a} \cdot \vec{a} + 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} < 1 \] - Since \(|\vec{a}|^2 = 1\) and \(|\vec{b}|^2 = 1\), we have: \[ 1 + 2 \vec{a} \cdot \vec{b} + 1 < 1 \] - This simplifies to: \[ 2 + 2 \vec{a} \cdot \vec{b} < 1 \] 4. **Isolating the Dot Product**: - Rearranging gives: \[ 2 \vec{a} \cdot \vec{b} < 1 - 2 \] - Thus: \[ 2 \vec{a} \cdot \vec{b} < -1 \] - Dividing by 2: \[ \vec{a} \cdot \vec{b} < -\frac{1}{2} \] 5. **Using the Dot Product Formula**: - The dot product of two vectors can also be expressed in terms of the angle between them: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\alpha) \] - Since both vectors are unit vectors, this simplifies to: \[ \vec{a} \cdot \vec{b} = \cos(\alpha) \] - Therefore, we have: \[ \cos(\alpha) < -\frac{1}{2} \] 6. **Finding the Angle**: - The cosine function is negative in the second and third quadrants. The angle \(\alpha\) for which \(\cos(\alpha) < -\frac{1}{2}\) corresponds to: \[ \alpha > \frac{2\pi}{3} \quad \text{(or 120 degrees)} \] ### Conclusion: The required values of \(\alpha\) are: \[ \alpha > \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

Let veca and vecb are two vectors inclined at an angle of 60^(@) , If |veca|=|vecb|=2 ,the the angle between veca and veca + vecb is

If veca and vecb are unit vectors inclined to x-axis at angle 30^(@) and 120^(@) then |veca +vecb| equals

Let veca and vecc be unit vectors inclined at pi//3 with each other. If (veca xx (vecb xx vecc)). (veca xx vecc)=5 , then [vecavecbvecc] is equal to

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

If veca and vecb are two unit vectors inclined at an angle pi/3 then { veca xx (vecb+veca xx vecb)} .vecb is equal to (a) -3/4 (b) 1/4 (c) 3/4 (d) 1/2

If veca and vecb are unit vectors making an angle alpha with each other, such that alpha in (0, pi) and |veca+2vecb|lt 5 , then alpha lies in the interval

If the unit vectors veca and vecb are inclined of an angle 2 theta such that |veca -vecb| lt 1 and 0 le theta le pi then theta in the interval

Let veca.vecb=0 where veca and vecb are unit vectors and the vector vecc is inclined an anlge theta to both veca and vecb. If vecc=mveca+nvecb + p(veca xx vecb) , (m,n,p in R) then

Let veca and vecb be unit vectors that are perpendicular to each other l. then [veca+ (veca xx vecb) vecb + (veca xx vecb) veca xx vecb] will always be equal to

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. The position vector of three points are 2veca-vecb+3vecc, veca-2vecb+l...

    Text Solution

    |

  2. Let a,b,c be three distinct positive real numbers. If vecp,vecq,vecr l...

    Text Solution

    |

  3. Let veca and vecb are unit vectors inclined at an angle alpha to each ...

    Text Solution

    |

  4. A unit vector in the xy-plane that makes an angle of pi/4 with the vec...

    Text Solution

    |

  5. The vectors 2hati-lamdahatj+3lamdahatk and (1+lamda)hati-2lamdahatj+ha...

    Text Solution

    |

  6. Let veca,vecb and vecc are three vectors such that |veca|=3, |vecb|=3,...

    Text Solution

    |

  7. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |

  8. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  9. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  10. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  11. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  12. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  13. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  14. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  15. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  16. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  17. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  18. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  19. If the verticles of a tetrahedron have the position vectors vec0, hati...

    Text Solution

    |

  20. If [(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd] then l...

    Text Solution

    |