Home
Class 12
MATHS
The vectors 2hati-lamdahatj+3lamdahatk a...

The vectors `2hati-lamdahatj+3lamdahatk and (1+lamda)hati-2lamdahatj+hatk` include an acute angle for (A) all values of `lambda`(B) `lamda lt -2 `and `lamdagt-1/2` (C) `lambda=-1/2` (D) `lamdaepsilon [-2,-1/2]`

A

All real m

B

`m lt -2 " or " m gt -(1)/(2)`

C

`m=-(1)/(2)`

D

`m in [-2,-(1)/(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine for which values of \( \lambda \) the vectors \[ \mathbf{A} = 2\hat{i} - \lambda \hat{j} + 3\lambda \hat{k} \] and \[ \mathbf{B} = (1 + \lambda)\hat{i} - 2\lambda \hat{j} + \hat{k} \] include an acute angle. The angle between two vectors is acute if the cosine of the angle is positive, which means that the dot product of the two vectors must be greater than zero. ### Step-by-step Solution: 1. **Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \)**: \[ \mathbf{A} \cdot \mathbf{B} = (2\hat{i} - \lambda \hat{j} + 3\lambda \hat{k}) \cdot ((1 + \lambda)\hat{i} - 2\lambda \hat{j} + \hat{k}) \] Using the distributive property of the dot product: \[ = 2(1 + \lambda) + (-\lambda)(-2\lambda) + (3\lambda)(1) \] \[ = 2 + 2\lambda + 2\lambda^2 + 3\lambda \] \[ = 2\lambda^2 + 5\lambda + 2 \] 2. **Set up the inequality for an acute angle**: We need: \[ 2\lambda^2 + 5\lambda + 2 > 0 \] 3. **Factor the quadratic expression**: To factor \( 2\lambda^2 + 5\lambda + 2 \), we can use the quadratic formula or factorization: \[ 2\lambda^2 + 5\lambda + 2 = (2\lambda + 1)(\lambda + 2) \] 4. **Determine the critical points**: The critical points from the factors are: \[ 2\lambda + 1 = 0 \implies \lambda = -\frac{1}{2} \] \[ \lambda + 2 = 0 \implies \lambda = -2 \] 5. **Test intervals around the critical points**: We will test the sign of \( (2\lambda + 1)(\lambda + 2) \) in the intervals: - \( (-\infty, -2) \) - \( (-2, -\frac{1}{2}) \) - \( (-\frac{1}{2}, \infty) \) - For \( \lambda < -2 \) (e.g., \( \lambda = -3 \)): \[ (2(-3) + 1)(-3 + 2) = (-6 + 1)(-1) = 5 > 0 \] - For \( -2 < \lambda < -\frac{1}{2} \) (e.g., \( \lambda = -1 \)): \[ (2(-1) + 1)(-1 + 2) = (-2 + 1)(1) = -1 < 0 \] - For \( \lambda > -\frac{1}{2} \) (e.g., \( \lambda = 0 \)): \[ (2(0) + 1)(0 + 2) = (1)(2) = 2 > 0 \] 6. **Conclusion**: The expression \( 2\lambda^2 + 5\lambda + 2 > 0 \) is satisfied for: - \( \lambda < -2 \) - \( \lambda > -\frac{1}{2} \) Therefore, the values of \( \lambda \) for which the vectors include an acute angle are: \[ \lambda \in (-\infty, -2) \cup (-\frac{1}{2}, \infty) \] ### Final Answer: The correct option is (B) \( \lambda < -2 \) and \( \lambda > -\frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

The vectors lamdahati+hatj+2hatk,hati+lamdahatj-hatkand2hati-hatj+lamdahatk are coplanar, if

If the planes vecr.(2hati-lamda hatj+3hatk)=0 and vecr.(lamda hati+5hatj-hatk)=5 are perpendicular to each other then value of lamda^(2)+lamda is

If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendicular, then lambda is equal to

The vectors 3hati - hatj +2hatk, 2hati+hatj+3hatk and hati+lambdahatj-hatk are coplanar if value of lambda is (A) -2 (B) 0 (C) 2 (D) any real number

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If two vectors 2hati+3hatj-hatk and -4hati-6hatj-lamdahatk are parallel to each other then value of lamda be

The two vectors veca =2hati+hatj+3hatk and vecb =4hati-lamdahatj+6hatk are parallel, if lamda is equal to: a) 2 b) -3 c) 3 d) -2

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If vector hati+hatj-hatk" and "2hati+2hatj+lambdahatk are parallel than find out the value of lambda :-

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. Let veca and vecb are unit vectors inclined at an angle alpha to each ...

    Text Solution

    |

  2. A unit vector in the xy-plane that makes an angle of pi/4 with the vec...

    Text Solution

    |

  3. The vectors 2hati-lamdahatj+3lamdahatk and (1+lamda)hati-2lamdahatj+ha...

    Text Solution

    |

  4. Let veca,vecb and vecc are three vectors such that |veca|=3, |vecb|=3,...

    Text Solution

    |

  5. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |

  6. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  7. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  8. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  9. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  10. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  11. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  12. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  13. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  14. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  15. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  16. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  17. If the verticles of a tetrahedron have the position vectors vec0, hati...

    Text Solution

    |

  18. If [(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd] then l...

    Text Solution

    |

  19. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  20. The position vectors of the sides of triangle are 3hati+4hatj+5hatk, h...

    Text Solution

    |