Home
Class 12
MATHS
Let veca,vecb and vecc are three vectors...

Let `veca,vecb` and `vecc` are three vectors such that `|veca|=3, |vecb|=3, |vecc|=2, |veca+vecb+vecc|=4` and `veca` is perpendicular to `vecb,vecc` makes angle `theta` and `phi` with `veca` and `vecb` respectively, then `cos theta+cos theta=`

A

`(3)/(4)`

B

`-(3)/(4)`

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Set up the equation for the magnitudes We know that the magnitude of the sum of the vectors is given by: \[ |\vec{a} + \vec{b} + \vec{c}| = 4 \] Squaring both sides gives: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 16 \] ### Step 2: Expand the left-hand side Using the property of dot products, we can expand the left-hand side: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 16 \] ### Step 3: Substitute the known magnitudes Given that \(|\vec{a}| = 3\), \(|\vec{b}| = 3\), and \(|\vec{c}| = 2\), we can substitute these values: \[ 3^2 + 3^2 + 2^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 16 \] This simplifies to: \[ 9 + 9 + 4 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 16 \] \[ 22 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 16 \] ### Step 4: Rearranging the equation Now, we can rearrange the equation to isolate the dot products: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 16 - 22 \] \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -6 \] \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -3 \] ### Step 5: Calculate the dot products Since \(\vec{a}\) is perpendicular to \(\vec{b}\), we have: \[ \vec{a} \cdot \vec{b} = 0 \] Thus, we can simplify the equation: \[ 0 + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -3 \] \[ \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -3 \] ### Step 6: Express the dot products in terms of angles Using the definitions of the dot product: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \phi = 3 \cdot 2 \cos \phi = 6 \cos \phi \] \[ \vec{c} \cdot \vec{a} = |\vec{c}| |\vec{a}| \cos \theta = 2 \cdot 3 \cos \theta = 6 \cos \theta \] Substituting these into our equation gives: \[ 6 \cos \phi + 6 \cos \theta = -3 \] Dividing through by 6: \[ \cos \phi + \cos \theta = -\frac{1}{2} \] ### Final Result Thus, the required value is: \[ \cos \theta + \cos \phi = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. A unit vector in the xy-plane that makes an angle of pi/4 with the vec...

    Text Solution

    |

  2. The vectors 2hati-lamdahatj+3lamdahatk and (1+lamda)hati-2lamdahatj+ha...

    Text Solution

    |

  3. Let veca,vecb and vecc are three vectors such that |veca|=3, |vecb|=3,...

    Text Solution

    |

  4. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |

  5. veca=2hati-hatj+hatk,vecb=hatj+2hatj-hatk,vecc=hati+hatj -2 hatk . A v...

    Text Solution

    |

  6. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  7. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  8. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  9. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  10. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  11. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  12. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  13. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  14. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  15. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  16. If the verticles of a tetrahedron have the position vectors vec0, hati...

    Text Solution

    |

  17. If [(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd] then l...

    Text Solution

    |

  18. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  19. The position vectors of the sides of triangle are 3hati+4hatj+5hatk, h...

    Text Solution

    |

  20. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |