Home
Class 12
MATHS
Let veca=2hati+2hatj+hatk and vecc is a ...

Let `veca=2hati+2hatj+hatk` and `vecc` is a vector such that `|vecaxxvecc|^(2)+(veca.vecc)^(2)=144` then `|vecc|` is equal to

A

16

B

4

C

3

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning and calculations laid out in the video transcript. ### Step 1: Identify the vector \(\vec{a}\) Given: \[ \vec{a} = 2\hat{i} + 2\hat{j} + \hat{k} \] ### Step 2: Calculate the magnitude of vector \(\vec{a}\) The magnitude of vector \(\vec{a}\) is calculated as follows: \[ |\vec{a}| = \sqrt{(2)^2 + (2)^2 + (1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 3: Use the given condition We are given the condition: \[ |\vec{a} \times \vec{c}|^2 + (\vec{a} \cdot \vec{c})^2 = 144 \] ### Step 4: Express \(|\vec{a} \times \vec{c}|\) and \(\vec{a} \cdot \vec{c}\) Let \(|\vec{c}| = c\) and \(\theta\) be the angle between \(\vec{a}\) and \(\vec{c}\). Using the formulas for cross and dot products: \[ |\vec{a} \times \vec{c}| = |\vec{a}| |\vec{c}| \sin \theta = 3c \sin \theta \] \[ \vec{a} \cdot \vec{c} = |\vec{a}| |\vec{c}| \cos \theta = 3c \cos \theta \] ### Step 5: Substitute into the given condition Substituting these expressions into the given condition: \[ (3c \sin \theta)^2 + (3c \cos \theta)^2 = 144 \] This simplifies to: \[ 9c^2 \sin^2 \theta + 9c^2 \cos^2 \theta = 144 \] ### Step 6: Factor out common terms Factoring out \(9c^2\): \[ 9c^2 (\sin^2 \theta + \cos^2 \theta) = 144 \] ### Step 7: Use the Pythagorean identity Since \(\sin^2 \theta + \cos^2 \theta = 1\): \[ 9c^2 \cdot 1 = 144 \] Thus: \[ 9c^2 = 144 \] ### Step 8: Solve for \(|\vec{c}|\) Dividing both sides by 9: \[ c^2 = \frac{144}{9} = 16 \] Taking the square root: \[ c = 4 \] ### Conclusion The magnitude of vector \(\vec{c}\) is: \[ |\vec{c}| = 4 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

Let veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc be vector such that |vecc -veca|=3, |(veca xx vecb) xx vecc|=3 and the angle between vecc and veca xx vecb " be " 30^(@) Then , veca . Vecc is equal to

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca=2hati+hatj-2hatk and vecb=hati+hatj . Let vecc be a vector such that |vecc-veca|=3,|(vecaxxvecb)xxvecc| = 3 and the angle between vecc and veca xx vecb is 30^@ Find veca.vecc

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  2. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  3. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  4. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  5. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  6. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  7. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  8. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  9. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  10. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  11. If the verticles of a tetrahedron have the position vectors vec0, hati...

    Text Solution

    |

  12. If [(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd] then l...

    Text Solution

    |

  13. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  14. The position vectors of the sides of triangle are 3hati+4hatj+5hatk, h...

    Text Solution

    |

  15. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  16. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  17. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  18. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  19. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  20. If veca, vecb,vecc are unit vectors such that veca is perpendicular to...

    Text Solution

    |