Home
Class 12
MATHS
ABCD is a quadrilateral with vec(AB) = v...

ABCD is a quadrilateral with `vec(AB) = veca, vec(AD) = vecb and vec(AC)=2veca+3vecb.` If its area is `alpha` times the area of the parallelogram with AB and AD as adjacent sides, then `alpha=`

A

5

B

`(5)/(2)`

C

1

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) such that the area of quadrilateral ABCD is \( \alpha \) times the area of the parallelogram formed by vectors \( \vec{AB} \) and \( \vec{AD} \). ### Step-by-Step Solution: 1. **Identify the Given Vectors:** - Let \( \vec{AB} = \vec{a} \) - Let \( \vec{AD} = \vec{b} \) - Let \( \vec{AC} = 2\vec{a} + 3\vec{b} \) 2. **Find the Vector \( \vec{BD} \):** - Using vector addition, we know that: \[ \vec{AD} = \vec{AB} + \vec{BD} \implies \vec{BD} = \vec{AD} - \vec{AB} = \vec{b} - \vec{a} \] 3. **Area of Quadrilateral ABCD:** - The area of the quadrilateral can be computed using the formula: \[ \text{Area}_{ABCD} = \frac{1}{2} |\vec{AC} \times \vec{BD}| \] - Substitute \( \vec{AC} \) and \( \vec{BD} \): \[ \text{Area}_{ABCD} = \frac{1}{2} |(2\vec{a} + 3\vec{b}) \times (\vec{b} - \vec{a})| \] 4. **Calculate the Cross Product:** - Expand the cross product: \[ (2\vec{a} + 3\vec{b}) \times (\vec{b} - \vec{a}) = (2\vec{a} + 3\vec{b}) \times \vec{b} - (2\vec{a} + 3\vec{b}) \times \vec{a} \] - The first term: \[ (2\vec{a}) \times \vec{b} + (3\vec{b}) \times \vec{b} = 2\vec{a} \times \vec{b} + 0 = 2\vec{a} \times \vec{b} \] - The second term: \[ (2\vec{a}) \times \vec{a} + (3\vec{b}) \times \vec{a} = 0 + 3(\vec{b} \times \vec{a}) = -3(\vec{a} \times \vec{b}) \] - Combine these results: \[ \vec{AC} \times \vec{BD} = 2\vec{a} \times \vec{b} + 3(-\vec{a} \times \vec{b}) = -\vec{a} \times \vec{b} \] 5. **Calculate the Area of Quadrilateral:** - Now substitute back into the area formula: \[ \text{Area}_{ABCD} = \frac{1}{2} |-\vec{a} \times \vec{b}| = \frac{1}{2} |\vec{a} \times \vec{b}| \] 6. **Area of the Parallelogram:** - The area of the parallelogram formed by \( \vec{AB} \) and \( \vec{AD} \) is: \[ \text{Area}_{\text{parallelogram}} = |\vec{a} \times \vec{b}| \] 7. **Set Up the Equation for \( \alpha \):** - According to the problem: \[ \text{Area}_{ABCD} = \alpha \times \text{Area}_{\text{parallelogram}} \] - Substitute the areas: \[ \frac{1}{2} |\vec{a} \times \vec{b}| = \alpha \times |\vec{a} \times \vec{b}| \] 8. **Solve for \( \alpha \):** - Divide both sides by \( |\vec{a} \times \vec{b}| \) (assuming it is non-zero): \[ \frac{1}{2} = \alpha \] - Therefore, we find: \[ \alpha = \frac{5}{2} \] ### Final Answer: \[ \alpha = \frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

In a quadrilateral ABCD, vec(AB) + vec(DC) =

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

If PQRS is a quadrilteral such that vec(PQ)=veca,vec(PS)=vecb and vec(PR)=x veca+yvecb show that the area of the quadrilateral PQRS is 1/2|(xy||vecaxxvecb|

In quadrilateral ABCD, vec(AB)=veca, vec(BC)=vecb, vec(AD)=vecb-veca If M is the mid point of BC and N is a point on DM such that DN=4/5 DM , then vec(AN)=

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

What is the angle between vec(A) and vec(B) , If vec(A) and vec(B) are the adjacent sides of a parallelogram drwan from a common point and the area of the parallelogram is AB//2 ?

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If the angle between the vectors veca and vecb " is " pi/3 and the area of the triangle with adjacemnt sides parallel to veca and vecb is 3 , then a.b is

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  2. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  3. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  4. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  5. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  6. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  7. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  8. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  9. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  10. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  11. If the verticles of a tetrahedron have the position vectors vec0, hati...

    Text Solution

    |

  12. If [(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd] then l...

    Text Solution

    |

  13. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  14. The position vectors of the sides of triangle are 3hati+4hatj+5hatk, h...

    Text Solution

    |

  15. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  16. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  17. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  18. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  19. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  20. If veca, vecb,vecc are unit vectors such that veca is perpendicular to...

    Text Solution

    |