Home
Class 12
MATHS
If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(v...

If `vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca)` and `[veca vecb vecc]=(1)/(3)`, then x+y+z is equal to

A

`7vecr.(veca+vecb+vecc)`

B

`vecr.(veca+vecb+vecc)`

C

`5vecr.(veca+vecb+vecc)`

D

`3vecr.(veca+vecb+vecc)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \vec{r} = x(\vec{a} \times \vec{b}) + y(\vec{b} \times \vec{c}) + z(\vec{c} \times \vec{a}) \] We also know that the scalar triple product \([\vec{a}, \vec{b}, \vec{c}] = \frac{1}{3}\). ### Step 1: Take the dot product with \(\vec{a}\) Taking the dot product of both sides of the equation with \(\vec{a}\): \[ \vec{r} \cdot \vec{a} = x(\vec{a} \times \vec{b}) \cdot \vec{a} + y(\vec{b} \times \vec{c}) \cdot \vec{a} + z(\vec{c} \times \vec{a}) \cdot \vec{a} \] Since \(\vec{a} \times \vec{b}\) is perpendicular to \(\vec{a}\), the first term becomes 0: \[ \vec{r} \cdot \vec{a} = 0 + y(\vec{b} \times \vec{c}) \cdot \vec{a} + 0 \] Thus, we have: \[ \vec{r} \cdot \vec{a} = y(\vec{b} \times \vec{c}) \cdot \vec{a} \] ### Step 2: Use the scalar triple product The term \((\vec{b} \times \vec{c}) \cdot \vec{a}\) is the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\): \[ \vec{r} \cdot \vec{a} = y \cdot \frac{1}{3} \] From this, we can express \(y\): \[ y = 3(\vec{r} \cdot \vec{a}) \] ### Step 3: Take the dot product with \(\vec{b}\) Now, we take the dot product of the original equation with \(\vec{b}\): \[ \vec{r} \cdot \vec{b} = x(\vec{a} \times \vec{b}) \cdot \vec{b} + y(\vec{b} \times \vec{c}) \cdot \vec{b} + z(\vec{c} \times \vec{a}) \cdot \vec{b} \] Again, \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\) and \((\vec{b} \times \vec{c}) \cdot \vec{b} = 0\): \[ \vec{r} \cdot \vec{b} = 0 + 0 + z(\vec{c} \times \vec{a}) \cdot \vec{b} \] Thus, we have: \[ \vec{r} \cdot \vec{b} = z(\vec{c} \times \vec{a}) \cdot \vec{b} \] Using the scalar triple product: \[ \vec{r} \cdot \vec{b} = z \cdot \frac{1}{3} \] From this, we can express \(z\): \[ z = 3(\vec{r} \cdot \vec{b}) \] ### Step 4: Take the dot product with \(\vec{c}\) Now, we take the dot product of the original equation with \(\vec{c}\): \[ \vec{r} \cdot \vec{c} = x(\vec{a} \times \vec{b}) \cdot \vec{c} + y(\vec{b} \times \vec{c}) \cdot \vec{c} + z(\vec{c} \times \vec{a}) \cdot \vec{c} \] Again, \((\vec{b} \times \vec{c}) \cdot \vec{c} = 0\) and \((\vec{c} \times \vec{a}) \cdot \vec{c} = 0\): \[ \vec{r} \cdot \vec{c} = x(\vec{a} \times \vec{b}) \cdot \vec{c} \] Using the scalar triple product: \[ \vec{r} \cdot \vec{c} = x \cdot \frac{1}{3} \] From this, we can express \(x\): \[ x = 3(\vec{r} \cdot \vec{c}) \] ### Step 5: Add \(x\), \(y\), and \(z\) Now we can add the three equations we derived: \[ x + y + z = 3(\vec{r} \cdot \vec{c}) + 3(\vec{r} \cdot \vec{a}) + 3(\vec{r} \cdot \vec{b}) \] Factoring out the 3: \[ x + y + z = 3(\vec{r} \cdot \vec{a} + \vec{r} \cdot \vec{b} + \vec{r} \cdot \vec{c}) \] ### Conclusion Thus, the final result is: \[ x + y + z = 3(\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 then vecaxx(vecbxxvecc) is equal to

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If vecr=x_(1)(vecaxx vecb) + x_(2) (vecb xxveca) + x_(3)(vecc xxvecd) and 4[veca vecb vecc] =1 " then " x_(1) + x_(2) + x_(3) is equal to

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

If [vecaxxvecb vecbxxvecc veccxxveca]=lamda [veca vecb vecc]^2 then lamda is equal to (A) 1 (B) 2 (C) 3 (D) 0

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) Such that x+y+z!=0 and vecr.(veca+vecb+vecc)=x+y+z , then [veca vecb vecc]=

If vecV=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and vecV.(veca+vecb+vecc)=x+y+z. The valueof [veca vecb vecc] if x+y+z!=0 ils (A) 0 (B) 1 (C) -1 (D) 2

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  2. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  3. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  4. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  5. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  6. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  7. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  8. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  9. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  10. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  11. If the verticles of a tetrahedron have the position vectors vec0, hati...

    Text Solution

    |

  12. If [(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd] then l...

    Text Solution

    |

  13. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  14. The position vectors of the sides of triangle are 3hati+4hatj+5hatk, h...

    Text Solution

    |

  15. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  16. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  17. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  18. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  19. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  20. If veca, vecb,vecc are unit vectors such that veca is perpendicular to...

    Text Solution

    |