Home
Class 12
MATHS
If the verticles of a tetrahedron have t...

If the verticles of a tetrahedron have the position vectors `vec0, hati+hatj, 2hatj-hatk` and `hati+hatk` then the volume of the tetrahedron is

A

`(1)/(6)`

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron with given vertices, we can use the formula for the volume of a tetrahedron formed by vectors originating from a common vertex. The formula is: \[ \text{Volume} = \frac{1}{6} | \vec{AB} \cdot (\vec{AC} \times \vec{AD}) | \] Where: - \(\vec{A}\), \(\vec{B}\), \(\vec{C}\), and \(\vec{D}\) are the position vectors of the vertices of the tetrahedron. ### Step 1: Identify the position vectors Given the vertices of the tetrahedron: - \(\vec{A} = \vec{0} = (0, 0, 0)\) - \(\vec{B} = \hat{i} + \hat{j} = (1, 1, 0)\) - \(\vec{C} = 2\hat{j} - \hat{k} = (0, 2, -1)\) - \(\vec{D} = \hat{i} + \hat{k} = (1, 0, 1)\) ### Step 2: Calculate the vectors \(\vec{AB}\), \(\vec{AC}\), and \(\vec{AD}\) - \(\vec{AB} = \vec{B} - \vec{A} = (1, 1, 0) - (0, 0, 0) = (1, 1, 0)\) - \(\vec{AC} = \vec{C} - \vec{A} = (0, 2, -1) - (0, 0, 0) = (0, 2, -1)\) - \(\vec{AD} = \vec{D} - \vec{A} = (1, 0, 1) - (0, 0, 0) = (1, 0, 1)\) ### Step 3: Calculate the cross product \(\vec{AC} \times \vec{AD}\) To find the cross product \(\vec{AC} \times \vec{AD}\): \[ \vec{AC} = (0, 2, -1), \quad \vec{AD} = (1, 0, 1) \] Using the determinant method for the cross product: \[ \vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -1 \\ 1 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & -1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} = (2)(1) - (0)(-1) = 2\) 2. \(\begin{vmatrix} 0 & -1 \\ 1 & 1 \end{vmatrix} = (0)(1) - (-1)(1) = 1\) 3. \(\begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = (0)(0) - (2)(1) = -2\) Putting it all together: \[ \vec{AC} \times \vec{AD} = 2\hat{i} - 1\hat{j} - 2\hat{k} = (2, -1, -2) \] ### Step 4: Calculate the dot product \(\vec{AB} \cdot (\vec{AC} \times \vec{AD})\) Now we calculate the dot product: \[ \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = (1, 1, 0) \cdot (2, -1, -2) \] Calculating this: \[ = (1)(2) + (1)(-1) + (0)(-2) = 2 - 1 + 0 = 1 \] ### Step 5: Calculate the volume of the tetrahedron Now we can find the volume: \[ \text{Volume} = \frac{1}{6} |1| = \frac{1}{6} \] ### Final Answer The volume of the tetrahedron is \(\frac{1}{6}\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

What is the vector equation of line through the points with position vectors hati+hatj+2hatk and 2hati+hatk .

The postion vectors of the four angular points of a tetrahedron are A(hatj+2hatk),B(3hati+hatk),C(4hati+3hatj+6hatk) and D(2hati+3hatj+2hatk) find the volume of the tetrahedron ABCD.

The point having position vectors 2hati+3hatj+4hatk,3hati+4hatj+2hatk and 4hati+2hatj+3hatk are the vertices of

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The volume of the tetrahedron whose vertices are the points hati, hati+hatj, hati+hatj+hatk and 2hati+3hatj+lamdahatk is 1//6 units, Then the values of lamda

If the position vectors of P and Q are (hati+3hatj-7hatk) and (5hati-2hatj+4hatk) , then |PQ| is

Find the vector area of the triangle, the position vectors of whose vertices are hati+hatj+2hatk, 2hati+2hatj-3hatk and 3hati-hatj-hatk

Find the image of a point having position vector, 3hati-2hatj+hatk in the plane vecr.(3hati-hatj+4hatk)=2

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  2. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  3. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  4. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  5. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  6. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  7. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  8. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  9. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  10. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  11. If the verticles of a tetrahedron have the position vectors vec0, hati...

    Text Solution

    |

  12. If [(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd] then l...

    Text Solution

    |

  13. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  14. The position vectors of the sides of triangle are 3hati+4hatj+5hatk, h...

    Text Solution

    |

  15. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  16. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  17. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  18. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  19. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  20. If veca, vecb,vecc are unit vectors such that veca is perpendicular to...

    Text Solution

    |