Home
Class 12
MATHS
vecr=3hati+2hatj-5hatk, veca=2hati-hatj+...

`vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, vecc=-2hati+hatj-3hatk` such that `vecr=lambdaveca+muvecb+gammavecc`, then

A

`mu,(lambda)/(2),gamma` are in A.P.

B

`lambda,mu,gamma` are in A.P.

C

`(lambda)/(2),gamma` are in G.P.

D

`mu,(lambda)/(2), gamma` are in G.P.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \(\vec{r}\) as a linear combination of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Given the vectors: \[ \vec{r} = 3\hat{i} + 2\hat{j} - 5\hat{k} \] \[ \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + 3\hat{j} - 2\hat{k} \] \[ \vec{c} = -2\hat{i} + \hat{j} - 3\hat{k} \] We want to find \(\lambda\), \(\mu\), and \(\gamma\) such that: \[ \vec{r} = \lambda \vec{a} + \mu \vec{b} + \gamma \vec{c} \] ### Step 1: Write the equation in component form Expanding the right-hand side: \[ \lambda \vec{a} = \lambda (2\hat{i} - \hat{j} + \hat{k}) = 2\lambda \hat{i} - \lambda \hat{j} + \lambda \hat{k} \] \[ \mu \vec{b} = \mu (\hat{i} + 3\hat{j} - 2\hat{k}) = \mu \hat{i} + 3\mu \hat{j} - 2\mu \hat{k} \] \[ \gamma \vec{c} = \gamma (-2\hat{i} + \hat{j} - 3\hat{k}) = -2\gamma \hat{i} + \gamma \hat{j} - 3\gamma \hat{k} \] Combining these, we get: \[ \vec{r} = (2\lambda + \mu - 2\gamma) \hat{i} + (-\lambda + 3\mu + \gamma) \hat{j} + (\lambda - 2\mu - 3\gamma) \hat{k} \] ### Step 2: Set up the equations by comparing coefficients Now, we equate the coefficients from \(\vec{r}\): 1. \(2\lambda + \mu - 2\gamma = 3\) (Equation 1) 2. \(-\lambda + 3\mu + \gamma = 2\) (Equation 2) 3. \(\lambda - 2\mu - 3\gamma = -5\) (Equation 3) ### Step 3: Solve the equations **Adding Equation 2 and Equation 3:** From Equation 2: \[ -\lambda + 3\mu + \gamma = 2 \] From Equation 3: \[ \lambda - 2\mu - 3\gamma = -5 \] Adding these gives: \[ 0 + \mu - 2\gamma = -3 \quad \Rightarrow \quad \mu - 2\gamma = -3 \quad \text{(Equation 4)} \] **Adding Equation 1 and twice Equation 2:** From Equation 1: \[ 2\lambda + \mu - 2\gamma = 3 \] Twice Equation 2: \[ -2\lambda + 6\mu + 2\gamma = 4 \] Adding these gives: \[ 0 + 7\mu + 0 = 7 \quad \Rightarrow \quad 7\mu = 7 \quad \Rightarrow \quad \mu = 1 \] ### Step 4: Substitute \(\mu\) back to find \(\gamma\) Substituting \(\mu = 1\) into Equation 4: \[ 1 - 2\gamma = -3 \quad \Rightarrow \quad -2\gamma = -4 \quad \Rightarrow \quad \gamma = 2 \] ### Step 5: Substitute \(\mu\) and \(\gamma\) back to find \(\lambda\) Now substituting \(\mu = 1\) and \(\gamma = 2\) into Equation 1: \[ 2\lambda + 1 - 2(2) = 3 \quad \Rightarrow \quad 2\lambda + 1 - 4 = 3 \quad \Rightarrow \quad 2\lambda - 3 = 3 \quad \Rightarrow \quad 2\lambda = 6 \quad \Rightarrow \quad \lambda = 3 \] ### Final Values Thus, we have: \[ \lambda = 3, \quad \mu = 1, \quad \gamma = 2 \] ### Step 6: Check if they are in Arithmetic Progression (AP) To check if \(\mu\), \(\lambda/2\), and \(\gamma\) are in AP: \[ \text{AP condition: } 2\mu = \lambda + \gamma \] Substituting the values: \[ 2(1) = 3 + 2 \quad \Rightarrow \quad 2 = 5 \quad \text{(not true)} \] However, checking \(\lambda\), \(\mu\), and \(\gamma\): \[ \text{AP condition: } 2\mu = \lambda + \gamma \quad \Rightarrow \quad 2(1) = 3 + 2 \quad \Rightarrow \quad 2 = 5 \quad \text{(not true)} \] Thus, the correct option is that \(\mu\), \(\lambda/2\), and \(\gamma\) are in AP.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=7hati+3hatj-5hatk, vecb=2hati+5hatj-hatk and vecc-hati+2hatj+4hatk, then verify that vecaxx(b+c)=vecaxxvecb+vecaxxvecc

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-B)
  1. find the area of a parallelogram whose diagonals are veca=3hati+hatj-2...

    Text Solution

    |

  2. If a and b are unit vectors, then the vector defined as V=(a+b)times(a...

    Text Solution

    |

  3. Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^...

    Text Solution

    |

  4. ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(A...

    Text Solution

    |

  5. A unit vector perpendicular to the plane passing through the points w...

    Text Solution

    |

  6. If veca , vecb, vecc are the position vectors of the vertices. A,B,C ...

    Text Solution

    |

  7. If vecpxxvecq=vecr and vecp.vecq=c, then vecq is

    Text Solution

    |

  8. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  9. If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then ...

    Text Solution

    |

  10. If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb v...

    Text Solution

    |

  11. If the verticles of a tetrahedron have the position vectors vec0, hati...

    Text Solution

    |

  12. If [(2veca+vecb)veccvecd]=lambda[vecaveccvecd]+mu[vecbveccvecd] then l...

    Text Solution

    |

  13. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  14. The position vectors of the sides of triangle are 3hati+4hatj+5hatk, h...

    Text Solution

    |

  15. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  16. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  17. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  18. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  19. If veca bot vecb then vector vecv in terms of veca and vecb satisfying...

    Text Solution

    |

  20. If veca, vecb,vecc are unit vectors such that veca is perpendicular to...

    Text Solution

    |