Home
Class 12
MATHS
If vecb ne 0, then every vector veca can...

If `vecb ne 0`, then every vector `veca` can be written in a unique manner as the sum of a vector `veca_(p)` parallel to `vecb` and a vector `veca_(q)` perpendicular to `vecb`. If `veca` is parallel to `vecb` then `veca_(q)`=0 and `veca_(q)=veca`. The vector `veca_(p)` is called the projection of `veca` on `vecb` and is denoted by proj `vecb(veca)`. Since proj`vecb(veca)` is parallel to `vecb`, it is a scalar multiple of the vector in the direction of `vecb` i.e.,
proj `vecb(veca)=lambdavecUvecb" " (vecUvecb=(vecb)/(|vecb|))`
The scalar `lambda` is called the componennt of `veca` in the direction of `vecb` and is denoted by comp `vecb(veca)`. In fact proj `vecb(veca)=(veca.vecUvecb)vecUvecb` and comp `vecb(veca)=veca.vecUvecb`.
If `veca=-2hati+hatj+hatk` and `vecb=4hati-3hatj+hatk` then proj `vecb(veca)` is

A

a. `4hati+2hatj+3hatk`

B

b. `(-5)/(13)` `4hati-3hatj+hatk`

C

c. `2hatj+hatj+hatk`

D

d. `(-4)/(11)` `4hati-3hatj+hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the projection of vector \(\vec{a}\) onto vector \(\vec{b}\), we will follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{a} = -2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = 4\hat{i} - 3\hat{j} + \hat{k} \] ### Step 2: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product is calculated as follows: \[ \vec{a} \cdot \vec{b} = (-2)(4) + (1)(-3) + (1)(1) \] \[ = -8 - 3 + 1 = -10 \] ### Step 3: Calculate the magnitude of \(\vec{b}\) The magnitude of vector \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{(4)^2 + (-3)^2 + (1)^2} = \sqrt{16 + 9 + 1} = \sqrt{26} \] ### Step 4: Calculate the projection of \(\vec{a}\) onto \(\vec{b}\) The formula for the projection of \(\vec{a}\) onto \(\vec{b}\) is: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] First, we need \( |\vec{b}|^2 \): \[ |\vec{b}|^2 = 26 \] Now substituting the values: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{-10}{26} \vec{b} = \frac{-5}{13} \vec{b} \] ### Step 5: Substitute \(\vec{b}\) into the projection formula Substituting \(\vec{b}\) into the equation: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{-5}{13} (4\hat{i} - 3\hat{j} + \hat{k}) \] Distributing the scalar: \[ = \frac{-20}{13} \hat{i} + \frac{15}{13} \hat{j} - \frac{5}{13} \hat{k} \] ### Final Answer Thus, the projection of \(\vec{a}\) onto \(\vec{b}\) is: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{-20}{13} \hat{i} + \frac{15}{13} \hat{j} - \frac{5}{13} \hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-E) Assertion-Reason Type Question|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-F (Matrix-Match Type Questions)|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If the vector vecb = 3hati + 4hatk is written as the sum of a vector vecb_(1) parallel to veca = hati + hatj and a vector vecb_(2) , perpendicular to veca then vecb_(1) xx vecb_(2) is equal to:

If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(vecaxxvecb) is parallel to the vector

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If veca an vecb are perpendicular vectors, |veca+vecb|=13 and |veca|=5 , find the value of |vecb| .

If veca and vecb are othogonal unit vectors, then for a vector vecr non - coplanar with veca and vecb vector vecr xx veca is equal to

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb.

Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb.

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is: