Home
Class 12
PHYSICS
A person walking ,on a horizontal road a...

A person walking ,on a horizontal road at 2 km/h finds that the rain is falling vertically . Now the person increasses his speed to 4 km/h and find that rain makes an angle ` 45^(@)` with the vertical . Find the velocity of rain with respect to the road.

Text Solution

AI Generated Solution

To solve the problem step by step, we will analyze the situation using vector components and the information given in the question. ### Step 1: Define the velocities Let: - \( V_m \) = velocity of the man with respect to the ground - \( V_r \) = velocity of the rain with respect to the ground Initially, the man walks at a speed of \( 2 \, \text{km/h} \) in the positive x-direction. Thus, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    AAKASH INSTITUTE ENGLISH|Exercise llustration 1 :|1 Videos
  • MOTION IN A PLANE

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|48 Videos
  • MOCK_TEST_17

    AAKASH INSTITUTE ENGLISH|Exercise Example|15 Videos
  • MOTION IN A STRAIGHT LINE

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)|15 Videos

Similar Questions

Explore conceptually related problems

A man running on the horizontal road at 8 km h^(-1) find the rain appears to be falling vertically. He incresases his speed to 12 km h^(-1) and find that the drops make angle 30^2 with the vertical. Find the speed and direction of the rain with respedt to the road.

A man running on the horizontal road at 8 km h^(-1) find the rain appears to be falling vertically. He incresases his speed to 12 km h^(-1) and find that the drops make angle 30^2 with the vertical. Fin dthe speed and direction of the rain with respedt to the road.

A man walking with a speed of 3 km/h finds the rain drops falling vertically downwards. When the man increases his speed to 6km/h he find that the rain drops are falling making an angle of 30^(@) with the vertical . Find the speed of the rain drops ( in km/h)

A man running at a speed of 5 km/h finds that the rain is falling vertically. When the stops running, the finds that the rain is falling at an angle of 60^(@) with the horizontal. The velocity of rain with respect to running man is

A man starts running along a straight road with uniform velocity observes that the rain is falling vertically downward. If he doubles his speed, he finds that the rain is coming at an angle theta to the vertical. The velocity of rain with respect to the ground is :

A man starts running along a straight road with uniform velocity observes that the rain is falling vertically downward. If he doubles his speed, he finds that the rain is coming at an angle theta to the vertical. The velocity of rain with respect to the ground is :

To a man walking at the rate of 3 km//h the rain appear to fall vertically downwards. When he increases his speed 6 km//h it appears to meet him at an angle of 45^@ with vertically. Find the speed of rain.

To a man walking at the rate of 4 km/h the rain appears to fall vertically. When he increases his speed 8 km/h it appears to meet him at an angle of 45 with vertical. Find the angle made by the velocity of rain with the vertical and its value.

A man when standstill observes the rain falling vertically and when he walks at 4 km//h he has to hold his umberella at an angle 53^(@) from the vertical. Find velocity of the raindrops.

A man when standstill observes the rain falling vertically and when he walks at 4 km//h he has to hold his umberella at an angle 53^(@) from the vertical. Find velocity of the raindrops.