Home
Class 12
PHYSICS
Two particles are projected simultaneous...

Two particles are projected simultaneously from two points O and O' such that d is the horizontal distance and h is the vertical distance between them as show in figure. These are projected at same inclination ` alpha` with the horizontal with the same speed v. Find an expression for time at which their separation becomes minimum.

Text Solution

Verified by Experts

Position of particles at any time t ( taking O as origin ) is
` vecr_(1) = vt cos alpha hat I + ( vt sin alpha - 1/2 "gt"^(2)) hatj`
` vecr_(2) = ( d - vt cos alpha) hati + ( -h + vt sin alpha - 1/2 "gt"^(2)) hatj`
`vecr = vecr_(1) -vecr_(2) ( 2vt cos alpha -d) hati + h hatj`
` Rightarrow |vecr| = sqrt((2vt cos alpha -d)^(2) +h^(2)))`
Now, ` (dr)/(dt) = 0, as r = r_(min)`
` Rightarrow 1/2[(2tv cos alpha -d)^(2) +h^(2)]^(1/2 -1) xx 2 [ 2 vt cos alpha -d] xx [ 2 v cos alpha] =0`
` Rightarrow t= d/(2 v cos alpha) `
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    AAKASH INSTITUTE ENGLISH|Exercise llustration 1 :|1 Videos
  • MOTION IN A PLANE

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|48 Videos
  • MOCK_TEST_17

    AAKASH INSTITUTE ENGLISH|Exercise Example|15 Videos
  • MOTION IN A STRAIGHT LINE

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)|15 Videos

Similar Questions

Explore conceptually related problems

Two particles are projected simultaneously from two points O and O' such that 10 m is the horizontal and 5 m is the vertical distance between them as shown in the figure. They are projected at the same inclination 60^@ to the horizontal with the same velocit 10 ms^(-1) . The time after which their separation becomes minimum is

Two bodies are projected at angle theta and ( 90 -theta ) to the horizontal with the same speed. Find the ration of their time of flight.

Two balls are projected from two points A and B,x metre apart as shown in figure.The time after which the horizontal distance between them become zero is

Two particles are projected with speed 4m//s and 3m//s simultaneously from same point as shown in the figure. Then:

Two balls are dropped simultaneously from two points separated by a vertical height of 6 m. The distance of separation between them after next 2s is

Two particles are projected simultaneously from two towers of different heights,one is horizontal with speed 10 m/s and the other at an angle 45° below the horizontal with speed v as shown in figure. The velocity v for which particles collides in air is

Two balls are projected at an angle theta and (90^(@) - theta) to the horizontal with the same speed. The ratio of their maximum vertical heights is

Two particles P & Q are projected simultaneously from a point O on a level ground in the same vertical plane with the same speed in directions making angle of 30^(@) and 60^(@) respectively with the horizontal.

Two particle of equal mass are projected simultaneously from the roof of a tower of height 20 m with same speed 20m//s, one horizontally and the other vertically upwards. Choose the correct alternative (s).

Two particles are projected simultaneously with same speed V_0 in same vertical plane at angle 30^@ and 60^@ With the horizontal .The time at which their velocities becomes parallel is