Home
Class 12
MATHS
Find (x+a)^(5)+(x-a)^(5). Hence, evaluat...

Find `(x+a)^(5)+(x-a)^(5)`. Hence, evaluate `(sqrt(6)+sqrt(7))^(5)+(sqrt(6)-sqrt(7))^(5)`

Text Solution

Verified by Experts

We know that
`(x+a)^(n)=.^(n)C_(0)x^(n)+.^(n)C_(a)x^(n-1)a+.^(n)C_(2)x^(n-2)a^(2)+ . . .+.^(n)C_(r)x^(n-r)a^(r)+ . . . .+.^(n)C_(n)a^(n)` . . . (1)
`therefore(x+a)^(5)+(x-a)^(5)={.^(5)C_(0)x^(5)+.^(5)C_(1)x^(4)a+.^(5)C_(2)x^(3)a^(2)+.^(5)C_(3)x^(2)a^(3)+.^(5)C_(4)xa^(4)+.^(5)C_(5)a^(5)}`
`+{.^(5)C_(0)x^(5)-.^(5)C_(1)x^(4)a+.^(5)C_(2)x^(3)a^(2)-.^(5)C_(3)x^(2)a^(3)+.^(5)C_(4)xa^(4)-.^(5)C_(5)a^(5)}`
`=2{.^(5)C_(0)x^(5)+.^(5)C_(2)x^(2)a^(2)+.^(5)C_(4)xa^(4)}`
Thus `(a+x)^(5)+(x-a)^(5)=2{.^(5)C_(0)x^(5)+.^(5)C_(2)x^(3)a^(2)+.^(5)C_(4)xa^(4)}` . . . (2)
Now putting the value of x and a as `sqrt(6) and sqrt(7)`respectively, we get
`(sqrt(6)+sqrt(7))^(5)+(sqrt(6)+sqrt(7))^(5)`
`=2{.^(5)C_(0)(sqrt(6))^(5)+.^(5)C_(2)(sqrt(6))^(3)(sqrt(7))^(2)+.^(5)C_(4)(sqrt(6))(sqrt(7))^(4)}`
`=2{36sqrt(6)+10xx6sqrt(6)xx7+5xx49sqrt(6)}`
`=2{36sqrt(6)+420sqrt(6)+245sqrt(6)}`
`=2{701sqrt(6)}`
`=1406sqrt(6)`
Hence, `(sqrt(6)+sqrt(7))^(5)+(sqrt(6)-sqrt(7))^(5)=1402sqrt(6)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|20 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Find (x+a)^(3)-(x-a)^(3) . Hence evaluate (sqrt(5)+sqrt(4))^(3)-(sqrt(5)-sqrt(4))^(3)

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

Find (1+x)^(6) - (1-x)^(6) . Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(6)

Find (x+1)^6+(x-1)^6 . Hence evaluate (sqrt(2)+1)^6+(sqrt(2)-1)^6 .

Evaluate x=sqrt(6+sqrt(6+sqrt(6+oodot)))

Evaluate x=sqrt(6+sqrt(6+sqrt(6+oodot)))

Expand (x+y)^(4)-(x-y)^(4) . Hence find the value of (3+sqrt(5))^(4) -(3-sqrt(5))^(4) .

Evaluate lim_(xtosqrt(10)) (sqrt(7+2x)-(sqrt(5)+sqrt(2)))/(x^(2)-10).

Using binomial theorem, expand [ ( x+y)^(5) + (x-y)^(5) ] and hence find the value of [ ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) ] .

Find (x+1)^6+(x-1)^6 . Hence or otherwise evaluate (sqrt(2)+1)^6+(sqrt(2)-1)^6 .