Home
Class 12
MATHS
If (1+px)^(n)=1+8x+24x^(2)+ . . ., then ...

If `(1+px)^(n)=1+8x+24x^(2)+ . . .`, then find `(p-n)/(p+n)`

Text Solution

Verified by Experts

We have,
`(1+px)^(n)=1+npx+(n(n-1))/(2!)p^(2)x^(2)+` . . .
`=1+8x+24x^(2)`+ . . .
Comparing the coefficient of like terms, we get
`np=8,(n(n-1))/(2)p^(2)=24`
`impliesnp(np-p)=24xx2`
`implies8=p=6`
`impliesp=2`
`impliesn=4 `
Thus `(p-n)/(p+n)=(2-4)/(2+4)=-(1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Illustration|1 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|20 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

If (1 + ax)^n= 1 +8x+ 24x^2 +..... then the value of a and n is

If (1+ax)^n = 1 + 8x + 24x^2 + … and a line through P(a, n) cuts the circle x^2 + y^2 = 4 in A and B , then PA.PB =

If alpha an integer and P (alpha, alpha^2) is a point in the interior of the quadrilateral x=0, y=0, 4x+y-21=0 and 3x+y-4=0, and (1+ax)^n = 1 + 8x+24x^2 + …, then alpha= (A) a (B) -a (C) a^2 (D) none of these

Let the co-efficients of x^n In (1+x)^(2n) and (1+x)^(2n-1) be P & Qrespectively, then ((P+Q)/Q)^5=

If P(n ,4)=20 x P(n ,2),find n.

Let lim _( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3)....n ^(n ))^((1)/(n ^(2)))=e^((-p)/(q)) where p and q are relative prime positive integers. Find the value of |p+q|.

In the given figure graph of : y =p (x) = x ^(n)+a_(1) x ^(n-1) +a_(2) x ^(n-2)+ ….. + a _(n) is given. The product of all imaginary roots of p(x) =0 is:

If x_1, x_2, x_3,...... x _(2n) are in A.P , then sum _(r=1)^(2n) (-1)^(r+1) x_r^2 is equal to (a) (n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (b) (2n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (c) (n)/((n-1))(x _(1)^(2) -x _(2n) ^(2)) (d) (n)/((2n+1))(x _(1)^(2) -x _(2n) ^(2))

If .^(n-1)P_3 :^(n+1)P_3 = 5 : 12, find n .

If (1+x+x^2++x^p)^n=a_0+a_1x+a_2x^2++a_(n p)x^(n p), then find the value of a_1+2a_2+3a_3+ddot+n pa_(n p)dot