Home
Class 12
MATHS
(C(1))/(C(0))+(2.C(2))/(C(1))+(3.C(3))/(...

`(C_(1))/(C_(0))+(2.C_(2))/(C_(1))+(3.C_(3))/(C_(2))+ . . .+(20.C_(20))/(C_(19))=`

A

180

B

210

C

240

D

280

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ S = \frac{C_1}{C_0} + \frac{2 \cdot C_2}{C_1} + \frac{3 \cdot C_3}{C_2} + \ldots + \frac{20 \cdot C_{20}}{C_{19}}, \] we will break it down step by step. ### Step 1: Understanding the terms The general term in the series can be expressed as: \[ T_r = r \cdot \frac{C_r}{C_{r-1}}. \] Here, \(C_r\) represents the binomial coefficient \(\binom{20}{r}\). ### Step 2: Expressing the binomial coefficients Using the definition of binomial coefficients, we have: \[ C_r = \frac{20!}{r!(20-r)!} \quad \text{and} \quad C_{r-1} = \frac{20!}{(r-1)!(20-r+1)!}. \] ### Step 3: Simplifying the ratio Now, we can simplify the term \(T_r\): \[ \frac{C_r}{C_{r-1}} = \frac{\frac{20!}{r!(20-r)!}}{\frac{20!}{(r-1)!(20-r+1)!}} = \frac{(20-r+1)}{r}. \] Thus, we can rewrite \(T_r\): \[ T_r = r \cdot \frac{(20-r+1)}{r} = 20 - r + 1 = 21 - r. \] ### Step 4: Summing the series Now, we need to sum \(T_r\) from \(r = 1\) to \(r = 20\): \[ S = \sum_{r=1}^{20} (21 - r). \] This can be rewritten as: \[ S = \sum_{r=1}^{20} 21 - \sum_{r=1}^{20} r. \] ### Step 5: Calculating the sums The first sum is straightforward: \[ \sum_{r=1}^{20} 21 = 21 \cdot 20 = 420. \] The second sum is the sum of the first 20 natural numbers: \[ \sum_{r=1}^{20} r = \frac{20 \cdot (20 + 1)}{2} = \frac{20 \cdot 21}{2} = 210. \] ### Step 6: Final calculation Now substituting back, we have: \[ S = 420 - 210 = 210. \] ### Final Answer Thus, the final answer is: \[ \boxed{210}. \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+…..+C_(n)x^(n) , then (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1)) is :

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

The value of ((C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+"......"+10(C_(10))/(C_(9))) (where C_(r) = .^(10)C_(r) ), is 11lambda , then value of lambda is

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

With usual notations prove that C_1/C_0 + 2. C_2/C_1 + 3.C_3/C_2 + ……+n.(C_n)/(C_(n-1)) = (n(n +1))/(2) Hence prove that (15C_1)/(15C_0) + 2.(15C_2)/(15C_1) + 3. (15C_3)/(15C_2) +……..+ 15. (15C_15)/(15C_14) = 120

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))

If C_(0), C_(1) C_(2) ….., denote the binomial coefficients in the expansion of (1 + x)^(n) , then (C_(0))/(2) - (C_(1))/(3) + (C_(2))/(4)- (C_(3))/(5)+...+ (-1)^(n)(C_(n))/(n+2) =

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

Prove that C_1/C_0+(2c_(2))/C_1+(3C_3)/(C_2)+......+(n.C_n)/(C_(n-1))=(n(n+1))/2

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-B)
  1. Consider the following statements S(1): The total of terms in (x^(2)...

    Text Solution

    |

  2. If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r),(1 + (C(1))/(C(0))) (1 + (C(...

    Text Solution

    |

  3. (C(1))/(C(0))+(2.C(2))/(C(1))+(3.C(3))/(C(2))+ . . .+(20.C(20))/(C(19)...

    Text Solution

    |

  4. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  5. If in the expansion of (1 +x)^(m) (1 - x)^(n) , the coefficients ...

    Text Solution

    |

  6. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  7. If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a(r)x^(r)(1-x)^(3n-2r), t...

    Text Solution

    |

  8. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  9. The coefficient of x^1007 in the expansion (1+x)^(2006)+x(1+x)^(2005)+...

    Text Solution

    |

  10. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  11. In the expansion of (x +a)^(n) the sum of even terms is E and that ...

    Text Solution

    |

  12. The sum of the last eight coefficients in the expansion of (1 + x)^16 ...

    Text Solution

    |

  13. The coefficient fo x^(3) y^(4) x^(5) in the expansion of (xy + yz +...

    Text Solution

    |

  14. In the expansion of (3x+2y-z)^(8), the coefficients of x^(2)y^(3)z^(3)...

    Text Solution

    |

  15. If n is ann integer greater than 1, then a-^(n)C(1)(a-1)+.^(n)C(2)(a...

    Text Solution

    |

  16. (C(0))/(1)+(C(1))/(2)+(C(2))/(3)+ . . . .+(C(100))/(101) equals

    Text Solution

    |

  17. 2C0+2^2/2 C1+2^3/3 C2+.............+2^11/11 C10 =?

    Text Solution

    |

  18. The coefficient of x^(n) in the polynomial (x+""^(2n+1)C(0))(X+""^(2n+...

    Text Solution

    |

  19. If C(r) stands for .^(n)C(r)=(n!)/(r!n-r!) and underset(r=1)overset(n)...

    Text Solution

    |

  20. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |