Home
Class 12
MATHS
underset(r=0)overset(n)(sum)(-1)^(r).^(n...

`underset(r=0)overset(n)(sum)(-1)^(r).^(n)C_(r)[(1)/(2^(r))+(3^(r))/(2^(2r))+(7^(r))/(2^(3r))+(15^(r))/(2^(4r))+ . . .m" terms"]=`

A

`(2^(mn)-1)/(2^(mn)(2^(n)-1))`

B

`(2^(mn)-1)/(2^(n)-1)`

C

`(2^(mn)+1)/(2^(n)+1)`

D

`(2^(mn)+1)/(2^(n)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given summation problem, we will follow a systematic approach using the Binomial Theorem and properties of series. The expression we need to evaluate is: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} \left( \frac{1}{2^r} + \frac{3^r}{2^{2r}} + \frac{7^r}{2^{3r}} + \frac{15^r}{2^{4r}} + \ldots \text{ (m terms)} \right) \] ### Step 1: Identify the pattern in the series The series inside the summation can be rewritten based on the pattern of the coefficients. The coefficients appear to follow the form \(2^r - 1\) for each term. Thus, we can express the series as: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} \left( \frac{2^r - 1}{2^r} + \frac{4^r - 1}{4^r} + \frac{8^r - 1}{8^r} + \ldots \right) \] ### Step 2: Rewrite the series We can rewrite the series as follows: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} \left( \frac{2^r - 1}{2^r} + \frac{4^r - 1}{4^r} + \frac{8^r - 1}{8^r} + \ldots \right) = \sum_{r=0}^{n} (-1)^r \binom{n}{r} \left( 1 - \frac{1}{2^r} + 1 - \frac{1}{4^r} + 1 - \frac{1}{8^r} + \ldots \right) \] ### Step 3: Factor out common terms We can factor out the common terms from the summation: \[ = \sum_{r=0}^{n} (-1)^r \binom{n}{r} \left( m - \left( \frac{1}{2^r} + \frac{1}{4^r} + \frac{1}{8^r} + \ldots \right) \right) \] ### Step 4: Use the Binomial Theorem Using the Binomial Theorem, we can evaluate the summation: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} x^r = (1 - x)^n \] ### Step 5: Substitute values Now, we substitute \(x = \frac{1}{2}\), \(x = \frac{1}{4}\), \(x = \frac{1}{8}\), etc., into the Binomial expansion: \[ (1 - \frac{1}{2})^n + (1 - \frac{1}{4})^n + (1 - \frac{1}{8})^n + \ldots \] ### Step 6: Evaluate the series Evaluating these terms gives us: \[ \sum_{k=1}^{m} (1 - \frac{1}{2^k})^n \] ### Step 7: Final simplification Now, we can simplify the result to find the final answer. The result will depend on the number of terms \(m\) and the value of \(n\). ### Final Result The final result of the summation can be expressed in terms of \(n\) and \(m\) as: \[ = \sum_{k=1}^{m} (1 - \frac{1}{2^k})^n \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-B)
  1. If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a(r)x^(r)(1-x)^(3n-2r), t...

    Text Solution

    |

  2. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  3. The coefficient of x^1007 in the expansion (1+x)^(2006)+x(1+x)^(2005)+...

    Text Solution

    |

  4. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  5. In the expansion of (x +a)^(n) the sum of even terms is E and that ...

    Text Solution

    |

  6. The sum of the last eight coefficients in the expansion of (1 + x)^16 ...

    Text Solution

    |

  7. The coefficient fo x^(3) y^(4) x^(5) in the expansion of (xy + yz +...

    Text Solution

    |

  8. In the expansion of (3x+2y-z)^(8), the coefficients of x^(2)y^(3)z^(3)...

    Text Solution

    |

  9. If n is ann integer greater than 1, then a-^(n)C(1)(a-1)+.^(n)C(2)(a...

    Text Solution

    |

  10. (C(0))/(1)+(C(1))/(2)+(C(2))/(3)+ . . . .+(C(100))/(101) equals

    Text Solution

    |

  11. 2C0+2^2/2 C1+2^3/3 C2+.............+2^11/11 C10 =?

    Text Solution

    |

  12. The coefficient of x^(n) in the polynomial (x+""^(2n+1)C(0))(X+""^(2n+...

    Text Solution

    |

  13. If C(r) stands for .^(n)C(r)=(n!)/(r!n-r!) and underset(r=1)overset(n)...

    Text Solution

    |

  14. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  15. If x + y = 1, prove that underset(r=0)overset(n)sum r.^(n)C(r) x^(r ) ...

    Text Solution

    |

  16. underset(r=1)overset(n)(sum)r(.^(n)C(r)-.^(n)C(r-1)) is equal to

    Text Solution

    |

  17. The expression ""^(n)C(r)+4.""^(n)C(r-1)+6.""^(n)C(r-2)+4.""^(n)C(r-...

    Text Solution

    |

  18. If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007!, then value...

    Text Solution

    |

  19. Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest...

    Text Solution

    |

  20. Find the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^(11)dot

    Text Solution

    |