Home
Class 12
MATHS
If C(r) stands for .^(n)C(r)=(n!)/(r!n-r...

If `C_(r)` stands for `.^(n)C_(r)=(n!)/(r!n-r!) and underset(r=1)overset(n)(sum)r.C_(r)^(2)=lamda` for `n ge 2`, then `lamda` is divisible by

A

`3(n-1)`

B

`n+1`

C

`n(2n-1)`

D

`n^(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given by the summation \( \sum_{r=1}^{n} r \cdot C(n, r)^2 \) and find out what \( \lambda \) is divisible by. ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression: \[ \lambda = \sum_{r=1}^{n} r \cdot C(n, r)^2 \] where \( C(n, r) \) is the binomial coefficient defined as: \[ C(n, r) = \frac{n!}{r!(n-r)!} \] 2. **Rewriting the Summation**: We can rewrite \( r \cdot C(n, r) \) as: \[ r \cdot C(n, r) = n \cdot C(n-1, r-1) \] This substitution allows us to express the summation in terms of \( C(n-1, r-1) \): \[ \lambda = \sum_{r=1}^{n} n \cdot C(n-1, r-1) \cdot C(n, r) \] 3. **Changing the Index of Summation**: By changing the index of summation (let \( k = r - 1 \)), we get: \[ \lambda = n \sum_{k=0}^{n-1} C(n-1, k) \cdot C(n-1, k) \] This is equivalent to: \[ \lambda = n \cdot \sum_{k=0}^{n-1} C(n-1, k)^2 \] 4. **Using the Identity for Binomial Coefficients**: There is a known identity for the sum of squares of binomial coefficients: \[ \sum_{k=0}^{m} C(m, k)^2 = C(2m, m) \] Applying this identity, we have: \[ \sum_{k=0}^{n-1} C(n-1, k)^2 = C(2(n-1), n-1) \] 5. **Final Expression for \( \lambda \)**: Substituting back, we get: \[ \lambda = n \cdot C(2(n-1), n-1) \] 6. **Finding Divisibility**: Now, we need to determine what \( \lambda \) is divisible by. The term \( C(2(n-1), n-1) \) counts the number of ways to choose \( n-1 \) elements from \( 2(n-1) \) elements, and it is always an integer. The factor \( n \) indicates that \( \lambda \) is divisible by \( n \). ### Conclusion: Thus, \( \lambda \) is divisible by \( n \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The values of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum)(C_(r)+C_(S)) is

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The value of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum),C_(r),C_(S) is

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-B)
  1. If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a(r)x^(r)(1-x)^(3n-2r), t...

    Text Solution

    |

  2. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  3. The coefficient of x^1007 in the expansion (1+x)^(2006)+x(1+x)^(2005)+...

    Text Solution

    |

  4. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  5. In the expansion of (x +a)^(n) the sum of even terms is E and that ...

    Text Solution

    |

  6. The sum of the last eight coefficients in the expansion of (1 + x)^16 ...

    Text Solution

    |

  7. The coefficient fo x^(3) y^(4) x^(5) in the expansion of (xy + yz +...

    Text Solution

    |

  8. In the expansion of (3x+2y-z)^(8), the coefficients of x^(2)y^(3)z^(3)...

    Text Solution

    |

  9. If n is ann integer greater than 1, then a-^(n)C(1)(a-1)+.^(n)C(2)(a...

    Text Solution

    |

  10. (C(0))/(1)+(C(1))/(2)+(C(2))/(3)+ . . . .+(C(100))/(101) equals

    Text Solution

    |

  11. 2C0+2^2/2 C1+2^3/3 C2+.............+2^11/11 C10 =?

    Text Solution

    |

  12. The coefficient of x^(n) in the polynomial (x+""^(2n+1)C(0))(X+""^(2n+...

    Text Solution

    |

  13. If C(r) stands for .^(n)C(r)=(n!)/(r!n-r!) and underset(r=1)overset(n)...

    Text Solution

    |

  14. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  15. If x + y = 1, prove that underset(r=0)overset(n)sum r.^(n)C(r) x^(r ) ...

    Text Solution

    |

  16. underset(r=1)overset(n)(sum)r(.^(n)C(r)-.^(n)C(r-1)) is equal to

    Text Solution

    |

  17. The expression ""^(n)C(r)+4.""^(n)C(r-1)+6.""^(n)C(r-2)+4.""^(n)C(r-...

    Text Solution

    |

  18. If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007!, then value...

    Text Solution

    |

  19. Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest...

    Text Solution

    |

  20. Find the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^(11)dot

    Text Solution

    |