Home
Class 12
MATHS
underset(r=1)overset(n)(sum)r(.^(n)C(r)-...

`underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1))` is equal to

A

`2^(n)+1n+1`

B

`2^(n)-n+1`

C

`n-2^(n)+1`

D

`n-2^(n)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=1}^{n} r \left( \binom{n}{r} - \binom{n}{r-1} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the given summation: \[ \sum_{r=1}^{n} r \left( \binom{n}{r} - \binom{n}{r-1} \right) \] This can be rewritten as: \[ \sum_{r=1}^{n} r \binom{n}{r} - \sum_{r=1}^{n} r \binom{n}{r-1} \] ### Step 2: Simplify the first term Using the identity \( r \binom{n}{r} = n \binom{n-1}{r-1} \), we can simplify the first term: \[ \sum_{r=1}^{n} r \binom{n}{r} = n \sum_{r=1}^{n} \binom{n-1}{r-1} \] The summation \( \sum_{r=1}^{n} \binom{n-1}{r-1} \) is equal to \( 2^{n-1} \) (the sum of the binomial coefficients for \( n-1 \)): \[ \sum_{r=1}^{n} r \binom{n}{r} = n \cdot 2^{n-1} \] ### Step 3: Simplify the second term For the second term, we can also apply the same identity: \[ \sum_{r=1}^{n} r \binom{n}{r-1} = \sum_{r=0}^{n-1} (r+1) \binom{n}{r} = \sum_{r=0}^{n-1} r \binom{n}{r} + \sum_{r=0}^{n-1} \binom{n}{r} \] The first part simplifies to: \[ \sum_{r=0}^{n-1} r \binom{n}{r} = n \cdot 2^{n-2} \] And the second part is simply \( 2^{n} \) (the sum of the binomial coefficients for \( n \)): \[ \sum_{r=0}^{n-1} \binom{n}{r} = 2^{n} \] ### Step 4: Combine the results Now, we can combine both results: \[ \sum_{r=1}^{n} r \left( \binom{n}{r} - \binom{n}{r-1} \right) = n \cdot 2^{n-1} - \left(n \cdot 2^{n-2} + 2^{n}\right) \] This simplifies to: \[ = n \cdot 2^{n-1} - n \cdot 2^{n-2} - 2^{n} \] \[ = n \cdot 2^{n-2} - 2^{n} \] \[ = 2^{n-2} (n - 2) \] ### Step 5: Final result Thus, the final result of the summation is: \[ \sum_{r=1}^{n} r \left( \binom{n}{r} - \binom{n}{r-1} \right) = n - 2^{n+1} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

If .^(47)C_(4)+underset(r=1)overset(5)(sum).^(52-r)C_(3) is equal to

Statement-1: If underset(r=1)overset(n)(sum)r^(3)((.^(n)C_(r))/(.^(n)C_(r-1)))^(2)=196 , then the sum of the coeficients of powerr of xin the expansion of the polynomial (x-3x^(2)+x^(3))^(n) is -1. Statement-2: (.^(n)C_(r))/(.^(n)C_(r-1))=(n-r+1)/(r) AA n in N and r in W .

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

If n is a positive integer, prove that underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to

sum_(r=0)^m .^(n+r)C_n is equal to

Statement-1: In the expansion of (sqrt(5)+3^(1//5))^(10) , sum of integral terms is 3134. Statement-2: (x+y)^(n)=underset(r=0)overset(n)(sum).^(n)C_(r)*x^(n-r)y^(r) .

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-B)
  1. If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a(r)x^(r)(1-x)^(3n-2r), t...

    Text Solution

    |

  2. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  3. The coefficient of x^1007 in the expansion (1+x)^(2006)+x(1+x)^(2005)+...

    Text Solution

    |

  4. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  5. In the expansion of (x +a)^(n) the sum of even terms is E and that ...

    Text Solution

    |

  6. The sum of the last eight coefficients in the expansion of (1 + x)^16 ...

    Text Solution

    |

  7. The coefficient fo x^(3) y^(4) x^(5) in the expansion of (xy + yz +...

    Text Solution

    |

  8. In the expansion of (3x+2y-z)^(8), the coefficients of x^(2)y^(3)z^(3)...

    Text Solution

    |

  9. If n is ann integer greater than 1, then a-^(n)C(1)(a-1)+.^(n)C(2)(a...

    Text Solution

    |

  10. (C(0))/(1)+(C(1))/(2)+(C(2))/(3)+ . . . .+(C(100))/(101) equals

    Text Solution

    |

  11. 2C0+2^2/2 C1+2^3/3 C2+.............+2^11/11 C10 =?

    Text Solution

    |

  12. The coefficient of x^(n) in the polynomial (x+""^(2n+1)C(0))(X+""^(2n+...

    Text Solution

    |

  13. If C(r) stands for .^(n)C(r)=(n!)/(r!n-r!) and underset(r=1)overset(n)...

    Text Solution

    |

  14. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  15. If x + y = 1, prove that underset(r=0)overset(n)sum r.^(n)C(r) x^(r ) ...

    Text Solution

    |

  16. underset(r=1)overset(n)(sum)r(.^(n)C(r)-.^(n)C(r-1)) is equal to

    Text Solution

    |

  17. The expression ""^(n)C(r)+4.""^(n)C(r-1)+6.""^(n)C(r-2)+4.""^(n)C(r-...

    Text Solution

    |

  18. If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007!, then value...

    Text Solution

    |

  19. Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest...

    Text Solution

    |

  20. Find the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^(11)dot

    Text Solution

    |