Home
Class 12
MATHS
The expression ""^(n)C(r)+4.""^(n)C(r-...

The expression
`""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)`

A

`((n+4),(r+4))`

B

`((n+4),(r))`

C

`((n+3),(r-1))`

D

`((n+4)/(r+3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \binom{n}{r} + 4\binom{n}{r-1} + 6\binom{n}{r-2} + 4\binom{n}{r-3} + \binom{n}{r-4} \] we can use the properties of binomial coefficients. ### Step 1: Group the terms We can group the terms in pairs to utilize the identity: \[ \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \] ### Step 2: Rewrite the expression We can rewrite the expression as follows: \[ \binom{n}{r} + \binom{n}{r-4} + 4\left(\binom{n}{r-1} + \binom{n}{r-3}\right) + 2\binom{n}{r-2} \] ### Step 3: Apply the identity Now, we apply the identity to the pairs: 1. For \(\binom{n}{r} + \binom{n}{r-4}\): \[ \binom{n}{r} + \binom{n}{r-4} = \binom{n+1}{r-1} + \binom{n+1}{r-3} \] 2. For \(4\left(\binom{n}{r-1} + \binom{n}{r-3}\right)\): \[ 4\left(\binom{n}{r-1} + \binom{n}{r-3}\right) = 4\binom{n+1}{r-2} \] 3. For \(2\binom{n}{r-2}\): \[ 2\binom{n}{r-2} \] ### Step 4: Combine the results Now we combine the results: \[ \binom{n+1}{r-1} + 4\binom{n+1}{r-2} + \binom{n+1}{r-3} \] ### Step 5: Apply the identity again We can apply the identity again to combine these terms: \[ \binom{n+1}{r-1} + \binom{n+1}{r-3} = \binom{n+2}{r-2} \] ### Step 6: Final expression Thus, we can express the entire original expression as: \[ \binom{n+4}{r} \] ### Conclusion The final result is: \[ \binom{n+4}{r} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

If ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda) the value of lambda is

If ""^(n)C _4 denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2)C_(r+1)

If ""^(n)C _r denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2) C_(r+1)

If ""^(n)C _r denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2) C _(r+1)

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-B)
  1. If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a(r)x^(r)(1-x)^(3n-2r), t...

    Text Solution

    |

  2. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  3. The coefficient of x^1007 in the expansion (1+x)^(2006)+x(1+x)^(2005)+...

    Text Solution

    |

  4. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  5. In the expansion of (x +a)^(n) the sum of even terms is E and that ...

    Text Solution

    |

  6. The sum of the last eight coefficients in the expansion of (1 + x)^16 ...

    Text Solution

    |

  7. The coefficient fo x^(3) y^(4) x^(5) in the expansion of (xy + yz +...

    Text Solution

    |

  8. In the expansion of (3x+2y-z)^(8), the coefficients of x^(2)y^(3)z^(3)...

    Text Solution

    |

  9. If n is ann integer greater than 1, then a-^(n)C(1)(a-1)+.^(n)C(2)(a...

    Text Solution

    |

  10. (C(0))/(1)+(C(1))/(2)+(C(2))/(3)+ . . . .+(C(100))/(101) equals

    Text Solution

    |

  11. 2C0+2^2/2 C1+2^3/3 C2+.............+2^11/11 C10 =?

    Text Solution

    |

  12. The coefficient of x^(n) in the polynomial (x+""^(2n+1)C(0))(X+""^(2n+...

    Text Solution

    |

  13. If C(r) stands for .^(n)C(r)=(n!)/(r!n-r!) and underset(r=1)overset(n)...

    Text Solution

    |

  14. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  15. If x + y = 1, prove that underset(r=0)overset(n)sum r.^(n)C(r) x^(r ) ...

    Text Solution

    |

  16. underset(r=1)overset(n)(sum)r(.^(n)C(r)-.^(n)C(r-1)) is equal to

    Text Solution

    |

  17. The expression ""^(n)C(r)+4.""^(n)C(r-1)+6.""^(n)C(r-2)+4.""^(n)C(r-...

    Text Solution

    |

  18. If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007!, then value...

    Text Solution

    |

  19. Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest...

    Text Solution

    |

  20. Find the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^(11)dot

    Text Solution

    |