Home
Class 12
MATHS
If underset(k=0)overset(n)(sum)(k^(2)+k+...

If `underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007!`, then value of n is

A

2007

B

2006

C

2008

D

2005

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation \[ \sum_{k=0}^{n} (k^2 + k + 1) k! = 2007 \cdot 2007! \] ### Step 1: Rewrite the summation We start by rewriting the expression inside the summation: \[ k^2 + k + 1 = k(k + 1) + 1 \] Thus, we can express the summation as: \[ \sum_{k=0}^{n} (k^2 + k + 1) k! = \sum_{k=0}^{n} (k(k + 1) + 1) k! = \sum_{k=0}^{n} k(k + 1) k! + \sum_{k=0}^{n} k! \] ### Step 2: Simplify the first part The term \(k(k + 1) k!\) can be rewritten as: \[ k(k + 1) k! = (k + 1)! \cdot k \] Thus, we have: \[ \sum_{k=0}^{n} k(k + 1) k! = \sum_{k=0}^{n} (k + 1)! \cdot k \] ### Step 3: Evaluate the summation Now, we can evaluate the summation: \[ \sum_{k=0}^{n} k(k + 1) k! = \sum_{k=0}^{n} (k + 1)! \cdot k = \sum_{k=1}^{n+1} (k!) \cdot (k - 1) \] This can be simplified further using the properties of factorials. ### Step 4: Combine the summations Now, we combine both parts: \[ \sum_{k=0}^{n} (k^2 + k + 1) k! = \sum_{k=0}^{n} (k + 1)! + \sum_{k=0}^{n} k! \] ### Step 5: Evaluate the total The total becomes: \[ \sum_{k=0}^{n} (k + 1)! = (n + 1)! \quad \text{and} \quad \sum_{k=0}^{n} k! = (n + 1)! - 1 \] Thus, we have: \[ (n + 1)! + (n + 1)! - 1 = 2(n + 1)! - 1 \] ### Step 6: Set the equation Now we set the equation equal to \(2007 \cdot 2007!\): \[ 2(n + 1)! - 1 = 2007 \cdot 2007! \] ### Step 7: Solve for \(n\) Rearranging gives us: \[ 2(n + 1)! = 2007 \cdot 2007! + 1 \] This implies: \[ (n + 1)! = \frac{2007 \cdot 2007! + 1}{2} \] ### Step 8: Find \(n\) We can see that \(n + 1 = 2007\), hence: \[ n = 2006 \] Thus, the value of \(n\) is: \[ \boxed{2006} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-A)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Let S_(k)=underset(ntooo)limunderset(i=0)overset(n)sum(1)/((k+1)^(i))." Then "underset(k=1)overset(n)sumkS_(k) equals

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

If f(x) = (a^(x))/(a^(x) + sqrt(a)), a gt 0 prove that (i) f(x) + f(1-x) = 1 (ii) underset(k=1)overset(2n-1)sum 2f ((k)/(2n)) = 2n-1 (iii) underset(k=1)overset(2n)sum 2f((k)/(2n+1)) = 2n

sum_(k=0)^(5)(-1)^(k)2k

Find the value underset(n rarr oo)("lim") underset(k =2)overset(n)sum cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

Let A_(1) , A_(2) ,…..,A_(n) ( n lt 2) be the vertices of regular polygon of n sides with its centre at he origin. Let veca_(k) be the position vector of the point A_(k) ,k = 1,2,….,n if |sum_(k=1)^(n-1) (veca_(k) xx veca_(k) +1)|=|sum_(k=1)^(n-1) (vecak.vecak+1)| then the minimum value of n is

The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx is (pi-1)/(k) . The value of k is ________.

AAKASH INSTITUTE ENGLISH-BINOMIAL THEOREM-Assignment (section-B)
  1. If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a(r)x^(r)(1-x)^(3n-2r), t...

    Text Solution

    |

  2. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  3. The coefficient of x^1007 in the expansion (1+x)^(2006)+x(1+x)^(2005)+...

    Text Solution

    |

  4. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  5. In the expansion of (x +a)^(n) the sum of even terms is E and that ...

    Text Solution

    |

  6. The sum of the last eight coefficients in the expansion of (1 + x)^16 ...

    Text Solution

    |

  7. The coefficient fo x^(3) y^(4) x^(5) in the expansion of (xy + yz +...

    Text Solution

    |

  8. In the expansion of (3x+2y-z)^(8), the coefficients of x^(2)y^(3)z^(3)...

    Text Solution

    |

  9. If n is ann integer greater than 1, then a-^(n)C(1)(a-1)+.^(n)C(2)(a...

    Text Solution

    |

  10. (C(0))/(1)+(C(1))/(2)+(C(2))/(3)+ . . . .+(C(100))/(101) equals

    Text Solution

    |

  11. 2C0+2^2/2 C1+2^3/3 C2+.............+2^11/11 C10 =?

    Text Solution

    |

  12. The coefficient of x^(n) in the polynomial (x+""^(2n+1)C(0))(X+""^(2n+...

    Text Solution

    |

  13. If C(r) stands for .^(n)C(r)=(n!)/(r!n-r!) and underset(r=1)overset(n)...

    Text Solution

    |

  14. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  15. If x + y = 1, prove that underset(r=0)overset(n)sum r.^(n)C(r) x^(r ) ...

    Text Solution

    |

  16. underset(r=1)overset(n)(sum)r(.^(n)C(r)-.^(n)C(r-1)) is equal to

    Text Solution

    |

  17. The expression ""^(n)C(r)+4.""^(n)C(r-1)+6.""^(n)C(r-2)+4.""^(n)C(r-...

    Text Solution

    |

  18. If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007!, then value...

    Text Solution

    |

  19. Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest...

    Text Solution

    |

  20. Find the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^(11)dot

    Text Solution

    |