Home
Class 12
MATHS
If C(0),C(1),C(2),C(3), . . .,C(n) be bi...

If `C_(0),C_(1),C_(2),C_(3), . . .,C_(n)` be binomial coefficients in the expansion of `(1+x)^(n)`, then
Q. The value of the expression `C_(0)+2C_(1) +3C_(2)+. . . .+(n+1)C_(n)` is equal to

A

`2^(n-1)(n+1)`

B

`2^(n-1)(n+2)`

C

`2^(n)(n+2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( C_0 + 2C_1 + 3C_2 + \ldots + (n+1)C_n \), where \( C_r \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The binomial coefficients \( C_r \) are given by \( C_r = \binom{n}{r} \), which represent the coefficients in the expansion of \( (1+x)^n \). 2. **Rewriting the Expression**: The expression we want to evaluate can be rewritten as: \[ C_0 + 2C_1 + 3C_2 + \ldots + (n+1)C_n = \sum_{r=0}^{n} (r+1) C_r \] 3. **Separating the Summation**: We can separate the summation into two parts: \[ \sum_{r=0}^{n} (r+1) C_r = \sum_{r=0}^{n} r C_r + \sum_{r=0}^{n} C_r \] 4. **Using the Properties of Binomial Coefficients**: - The second summation \( \sum_{r=0}^{n} C_r \) is simply \( (1+1)^n = 2^n \). - For the first summation \( \sum_{r=0}^{n} r C_r \), we can use the identity \( r C_r = n C_{r-1} \): \[ \sum_{r=0}^{n} r C_r = \sum_{r=1}^{n} n C_{r-1} = n \sum_{r=0}^{n-1} C_r = n \cdot 2^{n-1} \] 5. **Combining the Results**: Now, substituting back into our expression: \[ \sum_{r=0}^{n} (r+1) C_r = n \cdot 2^{n-1} + 2^n \] 6. **Simplifying the Expression**: We can factor out \( 2^{n-1} \): \[ n \cdot 2^{n-1} + 2^n = n \cdot 2^{n-1} + 2 \cdot 2^{n-1} = (n + 2) \cdot 2^{n-1} \] ### Final Result: Thus, the value of the expression \( C_0 + 2C_1 + 3C_2 + \ldots + (n+1)C_n \) is: \[ (n + 2) \cdot 2^{n-1} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-E) Objective type question (Assertion-Reson Type Questions)|6 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-G) Objective type question (Integer Answer Type Questions)|1 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))