Home
Class 12
MATHS
Let n be a positive integer and (1+x)^...

Let n be a positive integer and
`(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n)`
Where `C_(r)` stands for `.^(n)C_(r)`, then
Q. The values of `underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum)(C_(r)+C_(S))` is

A

`(n+1)2^(n+1)`

B

`n.2^(n)`

C

`(n+1)2^(n)`

D

`n.2^(n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the double summation given by: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} \left( C_r + C_s \right) \] where \( C_r = \binom{n}{r} \). ### Step 1: Rewrite the Double Summation We can rewrite the double summation as follows: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} \left( C_r + C_s \right) = \sum_{r=0}^{n} \sum_{s=0}^{n} C_r + \sum_{r=0}^{n} \sum_{s=0}^{n} C_s \] ### Step 2: Simplify the Inner Summation Since \( C_r \) does not depend on \( s \), we can factor it out of the inner summation: \[ \sum_{s=0}^{n} C_s = \sum_{s=0}^{n} \binom{n}{s} \] The sum of the binomial coefficients from \( 0 \) to \( n \) is known to equal \( 2^n \): \[ \sum_{s=0}^{n} C_s = 2^n \] Thus, we can rewrite our expression: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r = \sum_{r=0}^{n} C_r \cdot (n+1) = (n+1) \cdot 2^n \] ### Step 3: Combine the Results Now, substituting back into our original expression, we have: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} \left( C_r + C_s \right) = (n+1) \cdot 2^n + (n+1) \cdot 2^n = 2(n+1) \cdot 2^n \] ### Step 4: Final Result Thus, the final answer is: \[ 2^{n+1} (n+1) \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-E) Objective type question (Assertion-Reson Type Questions)|6 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-G) Objective type question (Integer Answer Type Questions)|1 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

Show that (C_(0))/(1) - (C_(1))/(4) + (C_(2))/(7) - … + (-1)^(n) (C_(n))/(3n +1) = (3^(n) * n!)/(1*4*7…(3n+1)) , where C_(r) stands for ""^(n)C_(r) .

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n), then prove that C_(0)+2C_(1)+4C_(2)+6C_(3)+...+2n.C_(n)=1+n*2^(n)

"if "(1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n), then prove that C_(0)+2C_(1)+4C_(2)+6C_(3)+…….+2n.C_(n)=1+n.2^(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :