Home
Class 12
MATHS
Let n be a positive integer and (1+x)^...

Let n be a positive integer and
`(1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n)`
Where `C_(r)` stands for `.^(n)C_(r)`, then
Q. The value of `underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum),C_(r),C_(S)` is

A

`2^(2n)`

B

`n.2^(2n-1)`

C

`n.2^(n+1)`

D

`n(n-1).2^(n-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the double summation: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s \] where \( C_r = \binom{n}{r} \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The binomial expansion of \( (1+x)^n \) gives us: \[ (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] where \( C_r = \binom{n}{r} \). 2. **Setting Up the Summation**: We need to evaluate: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s \] 3. **Rearranging the Summation**: Notice that the double summation can be rewritten using the property of summation: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s = \left( \sum_{r=0}^{n} C_r \right) \left( \sum_{s=0}^{n} C_s \right) \] 4. **Calculating the Individual Sums**: From the binomial theorem, we know: \[ \sum_{r=0}^{n} C_r = (1+1)^n = 2^n \] Therefore, we have: \[ \sum_{r=0}^{n} C_r = 2^n \] and similarly, \[ \sum_{s=0}^{n} C_s = 2^n \] 5. **Combining the Results**: Now substituting back into our rearranged summation: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s = (2^n)(2^n) = 2^{2n} \] 6. **Final Result**: Thus, the value of the double summation is: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s = 2^{2n} \] ### Conclusion: The final answer is: \[ \boxed{2^{2n}} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-E) Objective type question (Assertion-Reson Type Questions)|6 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-G) Objective type question (Integer Answer Type Questions)|1 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-C) Objective type question (More than one correct answer)|15 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

Show that (C_(0))/(1) - (C_(1))/(4) + (C_(2))/(7) - … + (-1)^(n) (C_(n))/(3n +1) = (3^(n) * n!)/(1*4*7…(3n+1)) , where C_(r) stands for ""^(n)C_(r) .

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n), then prove that C_(0)+2C_(1)+4C_(2)+6C_(3)+...+2n.C_(n)=1+n*2^(n)

"if "(1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n), then prove that C_(0)+2C_(1)+4C_(2)+6C_(3)+…….+2n.C_(n)=1+n.2^(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :