Home
Class 12
MATHS
Statement-1: If underset(r=1)overset(n)(...

Statement-1: If `underset(r=1)overset(n)(sum)r^(3)((.^(n)C_(r))/(.^(n)C_(r-1)))^(2)=196`, then the sum of the coeficients of powerr of xin the expansion of the polynomial `(x-3x^(2)+x^(3))^(n)` is -1. Statement-2: `(.^(n)C_(r))/(.^(n)C_(r-1))=(n-r+1)/(r) AA n in N and r in W`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow the steps outlined in the video transcript, breaking it down into a structured format. ### Step 1: Understand the Given Statement We need to evaluate the statement: \[ \sum_{r=1}^{n} r^3 \left( \frac{nC_r}{nC_{r-1}} \right)^2 = 196 \] We also need to verify the second statement: \[ \frac{nC_r}{nC_{r-1}} = \frac{n - r + 1}{r} \] ### Step 2: Simplify the Binomial Coefficient Ratio Using the formula for binomial coefficients: \[ nC_r = \frac{n!}{r!(n-r)!} \] we can express \(nC_{r-1}\): \[ nC_{r-1} = \frac{n!}{(r-1)!(n-r+1)!} \] Thus, \[ \frac{nC_r}{nC_{r-1}} = \frac{n!}{r!(n-r)!} \cdot \frac{(r-1)!(n-r+1)!}{n!} = \frac{(n-r+1)}{r} \] This confirms that the second statement is correct. ### Step 3: Substitute into the Summation Now, substituting the expression we derived into the summation: \[ \sum_{r=1}^{n} r^3 \left( \frac{n - r + 1}{r} \right)^2 = 196 \] This simplifies to: \[ \sum_{r=1}^{n} r^3 \cdot \frac{(n - r + 1)^2}{r^2} = 196 \] This can be rewritten as: \[ \sum_{r=1}^{n} r(n - r + 1)^2 = 196 \] ### Step 4: Expand the Summation Expanding \((n - r + 1)^2\): \[ (n - r + 1)^2 = n^2 - 2nr + 2n + r^2 - 2r + 1 \] Thus, \[ \sum_{r=1}^{n} r(n - r + 1)^2 = \sum_{r=1}^{n} r(n^2 - 2nr + 2n + r^2 - 2r + 1) \] This can be separated into individual summations: \[ n^2 \sum_{r=1}^{n} r - 2n \sum_{r=1}^{n} r^2 + 2n \sum_{r=1}^{n} r + \sum_{r=1}^{n} r^3 - 2 \sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r \] ### Step 5: Use Known Summation Formulas Using the formulas: - \(\sum_{r=1}^{n} r = \frac{n(n+1)}{2}\) - \(\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}\) - \(\sum_{r=1}^{n} r^3 = \left( \frac{n(n+1)}{2} \right)^2\) We can substitute these values into the equation and solve for \(n\). ### Step 6: Solve for \(n\) After substituting and simplifying, we find: \[ \text{(expression in terms of n)} = 196 \] Solving this will yield \(n = 6\). ### Step 7: Find the Coefficient of \(x\) in the Polynomial Now, substitute \(n = 6\) into the polynomial: \[ (x - 3x^2 + x^3)^6 \] To find the sum of the coefficients, substitute \(x = 1\): \[ (1 - 3 + 1)^6 = (-1)^6 = 1 \] ### Conclusion The sum of the coefficients of the power of \(x\) in the expansion is \(1\), which contradicts the statement that it is \(-1\). Therefore, Statement 1 is incorrect, while Statement 2 is correct.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-G) Objective type question (Integer Answer Type Questions)|1 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-H) Objective type question (Multiple True-False Type Questions)|2 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-D) Objective type question (Linked Comprehension Type Questions)|10 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

If n is a positive integer, prove that underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to