Home
Class 12
MATHS
Find a(1) and a(9) if a(n) is given by ...

Find `a_(1) and a_(9)` if `a_(n)` is given by ` a_(n) = (n^(2))/(n+1)`

Text Solution

Verified by Experts

Given .` a_(n) = (n^(2))/(n+1)`
Putting n = 7 and 9 , we get
`a_(7) = (49)/(8)`
`a_(9) = (81)/(10)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|87 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If a_(0) = 0.4 and a_(n+1) = 2|a_(n)|-1 , then a_(5) =

If a_(1)=3 and a_(n)=2a_(n-1)+5 , find a_(4) .

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

If lta_(n)gtandltb_(n)gt be two sequences given by a_(n)=(x)^((1)/(2^(n)))+(y)^((1)/(2^(n))) and b_(n)=(x)^((1)/(2^(n))) -(y)^((1)/(2^n)) for all ninN . Then, a_(1)a_(2)a_(3) . . . . .a_(n) is equal to

In a sequence, the n^(th) term a_(n) is defined by the rule (a_(n-1) - 3)^(2), a_(1) = 1 what is the value of a_(4) ?

If lta_(n)gtandltb_(n)gt be two sequences given by a_(n)=(x)^((1)/(2^(n)))+(y)^((1)/(2^(n)))-(y)^((1)/(2n)) for all ninN . Then, a_(1)a_(2)a_(3) . . . . .a_(n) is equal to

Write the first five terms of the following sequences and obtain the corresponding series (i) a_(1) = 7 , a_(n) = 2a_(n-1) + 3 "for n" gt 1 (ii) a_(1) = 2, a_(n) = (a_(n-1))/(n+1) "for n" ge 2

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(0), a_(1), a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

Some sequences are defined as follows. Find their first four terms : (i) a_(1)=a_(2)=2, a_(n)=a_(n-1)-1, n gt 2 " " (ii) a_(1)=3, a_(n)=3a_(n-1), n gt 1