Home
Class 12
MATHS
If a + b - 1, a gt 0,b gt 0, prove that ...

If a + b - 1, a `gt` 0,b `gt` 0, prove that `(a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)`

Text Solution

Verified by Experts

Observe that `(x - y)^(2) ge 0 `
`rArr x^(2) + y^(2) - 2xy ge0 `
`rArr x^(2) + y^(2) ge 2xy`
`rArr (x^(2) + y^(2)) + (x^(2) + y^(2)) ge x^(2) + y^(2) + 2xy" "` [Adding `x^(2) + y^(2)` to each side ]
`rArr 2(x^(2) + y^(2)) ge (x + y)^(2)`
`rArr (x^(2) +y^(2))/(2) ge (x +y)^(2)/(4)`
`rArr(x^(2) +y^(2))/(2) ge ((x +y)/(2))^(2)`
That is , mean of squares is greater than or equal to square of mean.
Now applying this to the given sum
`((a+(1)/(a))^(2) + (b +(1)/(b))^(2))/(2) ge((a+(1)/(a) +b(1)/(b))/(2))^(2) ge ((a +b +(1)/(a) +(1)/(b))/(2))^(2)` ...(i)
a + b = 1 when plugged in
`(a + b ) ((1)/(a) +(1)/(b)) ge 4 ` given `(1)/(a) +(1)/(b) ge 4 `
From (i) ,
`((a + (1)/(a))^(2) +(b +(1)/(b))^(2) )/(2)ge ((1 +4)/(2))^(2)`
i.e., `(a+(1)/(a))^(2)+(b+(1)/(b))^(2) ge (25)/(2)`.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|87 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

If agt0, b gt0 than lim_(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

If a and b are two negative integers such that a lt b " then " (1)/(a) gt (1)/(b) .

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .

If a,b,x,y are real number and x,y gt 0 , then (a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y) so on solving it we have (ay-bx)^(2) ge 0 . Similarly, we can extend the inequality to three pairs of numbers, i.e, (a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z) Now use this result to solve the following questions. If abc=1 , then the minimum value of (1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b)) is

Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(b^2-a^2)