Home
Class 12
MATHS
If a(1),a(2),a(3),".....",a(n) are in HP...

If `a_(1),a_(2),a_(3),".....",a_(n)` are in HP, than prove that `a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)`

Text Solution

Verified by Experts

As `a_(1). A_(2), …, a_(n) ` are in H.P., their reciprocals ` (1)/(a_(1)), (1)/(a_(2)),…, (1)/(a_(n))` are in in A.P. Let d be the common
difference of this A.P.
` (1)/(a_(n)) = (1)/(a_(1)) + (n-1)d `
`rArr (1)/(a_(n)) - (1)/(a_(1)) = (n-1)d`
` rArr a_(1) - a_(n) = (n-1) d. a_(1)a_(n)`
` rArr (1)/(d) (d_(1)_(n)) = (n-1) a_(1) a_(n)` ...(i)
Again ` (1)/(a_(2))- (1)/(a_(1))=(1)/(a_(3)) = (1)/(a_(2)) = ...= (1)/(a_(n) ) - (1)/(a_(n-a)) = d `
`rArr (a_(1) -a_(2))/(a_(1)a_(2) ) = (a_(2) - a_(3))/(a_(2) -a_(3)) = ...= (s_(n-1) -a_(n))/(a_(n-1) -a_(n)) `
` rArr (a_(1) a_(2))/(a_(1)-a_(2))=(a_(2)a_(3))/(a_(2) -a_(3))=...=(a_(n-1) a_(n))/(a_(n-1) -a_(n)) = (1)/(d)`
Now , ` a_(1) a_(2) + a_(2) a_(3) + ...+ a_(n-1) a_(n) = (1)/(d) {(a_(1) -a_(2)) + (a_(2) - a_(3)) + ...+ (a_(n-1) + a_(n))}`
` = (1)/(d) (a_(1) - a_(n))`
` = (n-1)a_(1) a_(n)` [ from (i) ]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|87 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

If the coefficients of 4 consecutive terms in the expansion of (1+x)^(n) are a_(1),a_(2),a_(3),a_(4) respectively, then show that (a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common ratio r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

if a_(1),a_(2),a_(3)……,a_(12) are in A.P and Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(2)= |{:(a_(2)a_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(4)a_(12),,a_(4),,a_(5)):}| then Delta_(1):Delta_(2)= "_____"

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to