Home
Class 12
MATHS
Solve , log((2x -3)) (x^(2) - 5x + 7) =...

Solve , ` log_((2x -3)) (x^(2) - 5x + 7) = 2 `

Text Solution

AI Generated Solution

To solve the equation \( \log_{(2x - 3)}(x^2 - 5x + 7) = 2 \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation Using the property of logarithms, we can rewrite the equation \( \log_{(2x - 3)}(x^2 - 5x + 7) = 2 \) in exponential form: \[ x^2 - 5x + 7 = (2x - 3)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|87 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Solve log_(2)|x| lt 3

Solve log_(x+3)(x^(2)-x) lt 1 .

Solve : log_(5-x)(x^(2)-2x+65)=2

Solve for x: log_(4) (2x+3) =(3)/(2)

Solve log_(3)(x-2) le 2 .

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve log_(3x -2) x^(2) gt log _(3x-2) (3x -2)

Solve log_(2).(x-4)/(2x+5) lt 1 .

Solve log_(10)(x^(2)-2x-2) le 0 .

Solve for x: a) log_(0.5)(x^(2)-5x+6) ge -1 , b) log_(1//3)(log_(4)(x^(2)-5)) gt 0