Home
Class 12
MATHS
Prove that loge ((n^2)/(n^2-1))=1/(n^2)...

Prove that `log_e ((n^2)/(n^2-1))=1/(n^2)+1/(2n^4)+1/(3n^6)+........oo`

Text Solution

Verified by Experts

L.H.S. ` log_(n) ((n^(2))/(n^(2) -1)) =- log_(e) ((n^(2) -1)/(n^(2))) `
` = - log_(e) (1-(1)/(n^(2))) " "- lt (1)/(n^(2) )lt 1 `
` [ - (1)/(n^(2)) - (1)/(2n^(4)) - (1)/(3n^(6)) - ...oo]`
`= (1)/(n^(2)) + (1)/(2.n^(4))+(1)/ (3.n^(6)) + ...oo` .
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|87 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that lim_(n->oo)(1+1/n)^n=e

Prove that : 1+2+3++n=(n(n+1))/2

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)

sum_(n=1)^(oo) (2n)/(n!)=

Find the sum Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)

Show that ("lim")_(n vec oo)(1/(n+1)+1/(n+2)++1/(6n))=log6

Prove that : 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

sum_(n=1)^oo 1/((n+1)(n+2)(n+3).........(n+k))