Home
Class 12
MATHS
The series expansion of log[(1 + x)^((...

The series expansion of ` log[(1 + x)^((1 + x))(1-x)^(1-x)]` is
(1)`2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...]`
(2) `[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...]`
(3)`2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...]`
(4)`2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]`

Text Solution

AI Generated Solution

To find the series expansion of \( \log[(1 + x)^{(1 + x)}(1 - x)^{(1 - x)}] \), we will follow these steps: ### Step 1: Apply Logarithmic Properties Using the properties of logarithms, we can rewrite the expression: \[ \log[(1 + x)^{(1 + x)}(1 - x)^{(1 - x)}] = \log[(1 + x)^{(1 + x)}] + \log[(1 - x)^{(1 - x)}] \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|87 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

1+(omega^2x)/(1!)+(omegax^2)/(2!)+(x^3)/(3!) + (omega^2x^4)/(4!) +(omegax^5)/(5!) +(x^6)/(6!) + .... oo =

lim_(x to 1)(x^(2)-6x+5)/(x^(2)+3x-4)=

Assertion (A) : (3^2)/(2!) +(3^4)/(4!)+(3^6)/(4!)+ .... = Cosh 3 -1 Reason (R) : Cosh x =1 +(x^2)/(2!) +x^4/(4!) + .....

If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals to

int((x^(- 6)-64)/(4+2x^(- 1)+x^(- 2))*(x^2)/(4-4x^(- 1)+x^(- 2))-(4x^2(2x+1))/(1-2x))dx

The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 is (1) 120 (2) 210 (3) 310 (4) 4

The term independent of x in expansion of ((x+1)/(x^(2/3)-x^(1/3)+1)-(x-1)/(x-x^(1/2)))^10 is (1) 120 (2) 210 (3) 310 (4) 4

Evaluate: int(x^(-7/6)-x^(5/6))/(x^(1/3)(x^2+x+1)^(1/2)-x^(1/2)(x^2+x+1)^(1/3))dx