Home
Class 12
MATHS
Let S denotes the infinite sum 2 + 5...

Let S denotes the infinite sum
` 2 + 5x + 9x^(2) + 14x^(3) + 2x^(4) + …`
where ` |x| lt 1 ` . Then S equals

A

`(2-x)/((1 - x)^(3))`

B

`(2-x)/(( 1 + x)^(3))`

C

`(2 + x)/((1 - x)^(3))`

D

`(2 + x)/((1 + x)^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the infinite sum \( S = 2 + 5x + 9x^2 + 14x^3 + 2x^4 + \ldots \) where \( |x| < 1 \), we will follow these steps: ### Step 1: Write the series We start by expressing the sum \( S \): \[ S = 2 + 5x + 9x^2 + 14x^3 + 2x^4 + \ldots \] ### Step 2: Multiply by \( x \) Next, we multiply the entire series by \( x \): \[ xS = 2x + 5x^2 + 9x^3 + 14x^4 + 2x^5 + \ldots \] ### Step 3: Subtract the two equations Now, we subtract the equation for \( xS \) from \( S \): \[ S - xS = (2 + 5x + 9x^2 + 14x^3 + 2x^4 + \ldots) - (2x + 5x^2 + 9x^3 + 14x^4 + 2x^5 + \ldots) \] This simplifies to: \[ S - xS = 2 + (5x - 2x) + (9x^2 - 5x^2) + (14x^3 - 9x^3) + (2x^4 - 14x^4) + \ldots \] \[ S - xS = 2 + 3x + 4x^2 + 5x^3 + 6x^4 + \ldots \] ### Step 4: Recognize the new series The series \( 2 + 3x + 4x^2 + 5x^3 + 6x^4 + \ldots \) can be expressed in a different form. We denote this new series as \( T \): \[ T = 2 + 3x + 4x^2 + 5x^3 + 6x^4 + \ldots \] ### Step 5: Multiply \( T \) by \( x \) Now, we multiply \( T \) by \( x \): \[ xT = 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + \ldots \] ### Step 6: Subtract \( T \) and \( xT \) Subtract \( xT \) from \( T \): \[ T - xT = 2 + (3x - 2x) + (4x^2 - 3x^2) + (5x^3 - 4x^3) + (6x^4 - 5x^4) + \ldots \] This simplifies to: \[ T - xT = 2 + x + x^2 + x^3 + x^4 + \ldots \] The right side is a geometric series with first term \( 2 \) and common ratio \( x \): \[ T - xT = 2 + \frac{x}{1 - x} \] ### Step 7: Solve for \( T \) We can factor out \( T \): \[ T(1 - x) = 2 + \frac{x}{1 - x} \] Thus, \[ T = \frac{2 + \frac{x}{1 - x}}{1 - x} \] This simplifies to: \[ T = \frac{2(1 - x) + x}{(1 - x)(1 - x)} = \frac{2 - 2x + x}{(1 - x)^2} = \frac{2 - x}{(1 - x)^2} \] ### Step 8: Substitute back to find \( S \) Now we substitute \( T \) back into our equation for \( S \): \[ S(1 - x) = T \] Thus, \[ S = \frac{T}{1 - x} = \frac{\frac{2 - x}{(1 - x)^2}}{1 - x} = \frac{2 - x}{(1 - x)^3} \] ### Final Answer Therefore, the sum \( S \) is: \[ S = \frac{2 - x}{(1 - x)^3} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…. , is (35)/(16) , where |x| lt 1 , then 'x' equals to

Find the domain of the function defined as f(x) = (x^(2) + 14x + 9)/(x^(2) -4x + 3) , where x in R .

If denote the set of all real x for which (x^(2)+x+1)^(x) lt 1 , then S =

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

Evaluate : 1^(2) + 2 ^(2) x + 3 ^(2) x ^(2) + 4 ^(2) x ^(3) …….. upto infinite terms for |x| lt 1.

Let Z be the set of integers. If A = {x in Z : 2^((x + 2)(x^(2) - 5x + 6)} = 1 and B = {x in Z : -3 lt 2x - 1 lt 9} , then the number of subsets of the set A xx B is

Find the range of f(x)=(x^(2)+14x+9)/(x^(2)+2x+3) , where x in R.

If 3+5x + 7x^2 …., oo term s=44/9 , then x is equal to:

Sum to infinity 1^(2) + 2^(2) x+3^(2)x^(2)+4^(2)x^(3)+.... X lt 1 numerically .

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 3+1/4(3+p)+1/(4^2)(3+2p)+... + oo=8, then p

    Text Solution

    |

  2. The value of 2^(1/4).4^(1/8).8^(1/16),,,,,,,oo is equal to.

    Text Solution

    |

  3. Let S denotes the infinite sum 2 + 5x + 9x^(2) + 14x^(3) + 2x^(4) ...

    Text Solution

    |

  4. The value of x + y + z is 15 if a, x, y, z, b are in A.P. while t...

    Text Solution

    |

  5. If x , y, z are positive reals satisfying 4xy + 6yz + 8 zx = 9 , ...

    Text Solution

    |

  6. The sum to 100 terms of the series 1.2.3. + 2.3.4. + 3.4.5. + …+ n...

    Text Solution

    |

  7. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  8. If x,y, z and w are non-zero real numbers and x^(2) + 5y^(2) + 5z^...

    Text Solution

    |

  9. If x^(18)=y^(21)=z^(28), then 3,3 log(y)x,3log(z)y,7log(x)z are in

    Text Solution

    |

  10. The coefficient of x^(101) in the expansion of (1 - x) (1- 2x) (1 ...

    Text Solution

    |

  11. If a,b,and c are in A.P ., P,q and r are in H.P and ap,bq and cr are i...

    Text Solution

    |

  12. Let C be a circle with centre P(0) and AB be a diameter of C . supp...

    Text Solution

    |

  13. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  14. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  15. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  16. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  17. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  18. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  19. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  20. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |