Home
Class 12
MATHS
If x^(18)=y^(21)=z^(28), then 3,3 log(y)...

If `x^(18)=y^(21)=z^(28)`, then 3,3 `log_(y)x,3log_(z)y,7log_(x)z` are in

A

A.P.

B

G.P.

C

H.P.

D

A.G.P.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x^{18} = y^{21} = z^{28} \), we will find out if \( 3 \log_y x \), \( 3 \log_z y \), and \( 7 \log_x z \) are in arithmetic progression (AP). ### Step-by-step Solution: 1. **Set a Common Value**: Let \( x^{18} = y^{21} = z^{28} = k \). 2. **Take Logarithms**: Taking logarithms on both sides, we have: \[ 18 \log x = 21 \log y = 28 \log z = \log k \] 3. **Express Logarithms**: From the above equations, we can express the logarithms as: \[ \log x = \frac{\log k}{18}, \quad \log y = \frac{\log k}{21}, \quad \log z = \frac{\log k}{28} \] 4. **Find Ratios**: Now, we can find the ratios: - For \( \log_y x \): \[ \log_y x = \frac{\log x}{\log y} = \frac{\frac{\log k}{18}}{\frac{\log k}{21}} = \frac{21}{18} = \frac{7}{6} \] - For \( \log_z y \): \[ \log_z y = \frac{\log y}{\log z} = \frac{\frac{\log k}{21}}{\frac{\log k}{28}} = \frac{28}{21} = \frac{4}{3} \] - For \( \log_x z \): \[ \log_x z = \frac{\log z}{\log x} = \frac{\frac{\log k}{28}}{\frac{\log k}{18}} = \frac{18}{28} = \frac{9}{14} \] 5. **Calculate the Values**: Now we can calculate: - \( 3 \log_y x = 3 \cdot \frac{7}{6} = \frac{21}{6} = \frac{7}{2} \) - \( 3 \log_z y = 3 \cdot \frac{4}{3} = 4 \) - \( 7 \log_x z = 7 \cdot \frac{9}{14} = \frac{63}{14} = \frac{9}{2} \) 6. **Check for Arithmetic Progression**: Now we have the three terms: - \( a = \frac{7}{2} \) - \( b = 4 \) - \( c = \frac{9}{2} \) To check if they are in AP, we need to see if: \[ 2b = a + c \] Substituting the values: \[ 2 \cdot 4 = \frac{7}{2} + \frac{9}{2} \] Simplifying the right-hand side: \[ 8 = \frac{16}{2} = 8 \] Since both sides are equal, the terms are in AP. ### Conclusion: Thus, \( 3 \log_y x \), \( 3 \log_z y \), and \( 7 \log_x z \) are in arithmetic progression.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

. If 1, log_y x, log_z y, -15 log_x z are in AP, then

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If 1, log_(y)x, log_(z)y,-15 log_(x)z are in A.P. then the correct statement is :

The numbers 1/3, 1/3 log _(x) y, 1/3 log _(y) z, 1/7 log _(x) x are in H.P. If y= x ^® and z =x ^(s ), then 4 (r +s)=

The numbers 1/3, 1/3 log _(x) y, 1/3 log _(y) z, 1/7 log _(x) x are in H.P. If y= x ^r and z =x ^(s ), then 4 (r +s)=

Statement-1: If a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8) Statement-2: "log"_(b) a = (1)/("log"_(a)b)

If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log_(e)x) , (1)/(4x+log_(e)y) , (1)/(6x+log_(ez)z) are in

State, true or false : (i) If log_(10)x = a , then 10^(x) = a (ii) If x^(y) = z , then y = log_(z) x . (iii) log_(2) 8 = 3 and log_(8) 2 = (1)/(3) .

x^((log_x)log_a ylog_y z) is equal to

x^((log_x)log_a ylog_y z) is equal to

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  2. If x,y, z and w are non-zero real numbers and x^(2) + 5y^(2) + 5z^...

    Text Solution

    |

  3. If x^(18)=y^(21)=z^(28), then 3,3 log(y)x,3log(z)y,7log(x)z are in

    Text Solution

    |

  4. The coefficient of x^(101) in the expansion of (1 - x) (1- 2x) (1 ...

    Text Solution

    |

  5. If a,b,and c are in A.P ., P,q and r are in H.P and ap,bq and cr are i...

    Text Solution

    |

  6. Let C be a circle with centre P(0) and AB be a diameter of C . supp...

    Text Solution

    |

  7. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  8. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  9. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  10. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  11. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  12. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  13. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  14. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  15. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  16. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  17. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  18. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  19. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  20. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |