Home
Class 12
MATHS
If 1,log9(3^(1-x)+2), log3(4*3^x-1) are ...

If `1,log_9(3^(1-x)+2), log_3(4*3^x-1)` are in A.P then x equals to

A

`1 log_(3) 4`

B

`1 - log_(3) 4 `

C

`log_(3) 0.25`

D

`log_(4) 3 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the terms \( 1, \log_9(3^{1-x} + 2), \log_3(4 \cdot 3^x - 1) \) are in Arithmetic Progression (A.P). ### Step 1: Set up the A.P condition For three terms \( a, b, c \) to be in A.P, the condition is: \[ 2b = a + c \] Here, let: - \( a = 1 \) - \( b = \log_9(3^{1-x} + 2) \) - \( c = \log_3(4 \cdot 3^x - 1) \) Thus, we have: \[ 2 \log_9(3^{1-x} + 2) = 1 + \log_3(4 \cdot 3^x - 1) \] ### Step 2: Convert \( \log_9 \) to \( \log_3 \) Using the change of base formula, we can convert \( \log_9 \) to \( \log_3 \): \[ \log_9(3^{1-x} + 2) = \frac{\log_3(3^{1-x} + 2)}{\log_3(9)} = \frac{\log_3(3^{1-x} + 2)}{2} \] Substituting this back into the A.P condition gives: \[ 2 \cdot \frac{\log_3(3^{1-x} + 2)}{2} = 1 + \log_3(4 \cdot 3^x - 1) \] This simplifies to: \[ \log_3(3^{1-x} + 2) = 1 + \log_3(4 \cdot 3^x - 1) \] ### Step 3: Use properties of logarithms Using the property \( \log_a b + \log_a c = \log_a(b \cdot c) \), we can rewrite the equation: \[ \log_3(3^{1-x} + 2) = \log_3(3) + \log_3(4 \cdot 3^x - 1) \] This leads to: \[ \log_3(3^{1-x} + 2) = \log_3(3(4 \cdot 3^x - 1)) \] ### Step 4: Remove the logarithm Since the logarithm is one-to-one, we can equate the arguments: \[ 3^{1-x} + 2 = 3(4 \cdot 3^x - 1) \] ### Step 5: Simplify the equation Expanding the right side gives: \[ 3^{1-x} + 2 = 12 \cdot 3^x - 3 \] Rearranging this leads to: \[ 3^{1-x} - 12 \cdot 3^x + 5 = 0 \] ### Step 6: Substitute \( y = 3^x \) Let \( y = 3^x \). Then \( 3^{1-x} = \frac{3}{y} \). Substituting this into the equation gives: \[ \frac{3}{y} - 12y + 5 = 0 \] Multiplying through by \( y \) to eliminate the fraction results in: \[ 3 - 12y^2 + 5y = 0 \] Rearranging gives: \[ 12y^2 - 5y - 3 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 12 \cdot (-3)}}{2 \cdot 12} \] Calculating the discriminant: \[ 25 + 144 = 169 \] Thus: \[ y = \frac{5 \pm 13}{24} \] Calculating the two possible values for \( y \): 1. \( y = \frac{18}{24} = \frac{3}{4} \) 2. \( y = \frac{-8}{24} \) (not valid since \( y \) must be positive) ### Step 8: Find \( x \) Since \( y = 3^x \), we have: \[ 3^x = \frac{3}{4} \] Taking logarithm base 3: \[ x = \log_3\left(\frac{3}{4}\right) = 1 - \log_3(4) \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{1 - \log_3(4)} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If 1, log_3sqrt(3^(1-x)+2), log_3 (4*3^x-1) are in AP then x equals

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If 1, log_(y)x, log_(z)y,-15 log_(x)z are in A.P. then the correct statement is :

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

If logx, logsqrt(6-2x) ,log(x-1) re in A.P .then value of (x)/(3) is

If log2,log(2^x-1),log(2^x+3) are in A.P., write the value of xdot

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

If 3^(x+1)=6^(log_(2)3) , then x is equal to

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If a,b,and c are in A.P ., P,q and r are in H.P and ap,bq and cr are i...

    Text Solution

    |

  2. Let C be a circle with centre P(0) and AB be a diameter of C . supp...

    Text Solution

    |

  3. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  4. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  5. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  6. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  7. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  8. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  9. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  10. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  11. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  12. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  13. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  14. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  15. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  16. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  17. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  18. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  19. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  20. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |