Home
Class 12
MATHS
Let log(2) 3 = alpha , then log(64) 72...

Let ` log_(2) 3 = alpha `, then ` log_(64) 729` is

A

`alpha`

B

`(alpha)/(3)`

C

`3 alpha`

D

`2 alpha `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{64} 729 \) given that \( \log_{2} 3 = \alpha \). ### Step-by-step Solution: 1. **Rewrite the logarithm using the change of base formula:** \[ \log_{64} 729 = \frac{\log 729}{\log 64} \] 2. **Express 729 and 64 in terms of their prime factors:** - \( 729 = 3^6 \) - \( 64 = 2^6 \) 3. **Substitute these values into the logarithm:** \[ \log_{64} 729 = \frac{\log(3^6)}{\log(2^6)} \] 4. **Use the power rule of logarithms:** \[ \log(3^6) = 6 \log 3 \quad \text{and} \quad \log(2^6) = 6 \log 2 \] Therefore, \[ \log_{64} 729 = \frac{6 \log 3}{6 \log 2} \] 5. **Simplify the expression:** The \( 6 \) in the numerator and denominator cancels out: \[ \log_{64} 729 = \frac{\log 3}{\log 2} \] 6. **Substitute the value of \( \log 3 / \log 2 \) using the given information:** Since \( \log_{2} 3 = \alpha \), we have: \[ \frac{\log 3}{\log 2} = \alpha \] 7. **Final answer:** Thus, we conclude that: \[ \log_{64} 729 = \alpha \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

If "log"_(10) 2 = 0.3010, "then log"_(5) 64=

If log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4 .

Let log_(a)N=alpha + beta where alpha is integer and beta =[0,1) . Then , On the basis of above information , answer the following questions. The difference of largest and smallest integral value of N satisfying alpha =3 and a =5 , is

Arrange log_(2) 5, log_(0.5) 5, log_(7) 5, log_(3) 5 in decreasing order.

Find x, if : (i) log_(2) x = -2 (ii) log_(4) (x + 3) = 2 (iii) log_(x) 64 = (3)/(2)

Evaluate : (i) log_(125) 625 - log_(16) 64 (ii) log_(16) 32 - log_(25) 125 + log_(9) 27 .

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

How many positive integers b have the property that log_(b)729 is a positive integer ?

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |