Home
Class 12
MATHS
the value of 2/(1!)+ (2+4)/(2!) + (2+4...

the value of `2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +..................` is

A

e

B

2e

C

3e

D

3e - 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series: \[ S = \frac{2}{1!} + \frac{2 + 4}{2!} + \frac{2 + 4 + 6}{3!} + \cdots \] ### Step 1: Rewrite the series in a more manageable form We can express the \(n\)-th term of the series as follows: \[ \frac{2 + 4 + 6 + \ldots + 2n}{n!} \] The sum \(2 + 4 + 6 + \ldots + 2n\) can be simplified. This is an arithmetic series where the first term \(a = 2\), the last term \(l = 2n\), and the number of terms \(n\) is \(n\). The sum of the first \(n\) even numbers is given by: \[ \text{Sum} = n \cdot \left(\frac{a + l}{2}\right) = n \cdot \left(\frac{2 + 2n}{2}\right) = n(n + 1) \] Thus, we can rewrite the \(n\)-th term as: \[ \frac{n(n + 1)}{n!} \] ### Step 2: Simplify the expression Now we can rewrite the series \(S\): \[ S = \sum_{n=1}^{\infty} \frac{n(n + 1)}{n!} \] ### Step 3: Break down the term We can separate \(n(n + 1)\) as follows: \[ n(n + 1) = n^2 + n \] Thus, we can write: \[ S = \sum_{n=1}^{\infty} \frac{n^2}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} \] ### Step 4: Evaluate each sum 1. **For the sum \(\sum_{n=1}^{\infty} \frac{n}{n!}\)**: We know that: \[ \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \] Differentiating both sides with respect to \(x\): \[ \sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!} = e^x \] Setting \(x = 1\): \[ \sum_{n=1}^{\infty} \frac{n}{n!} = e \] 2. **For the sum \(\sum_{n=1}^{\infty} \frac{n^2}{n!}\)**: We can use the result from the previous differentiation: \[ \sum_{n=1}^{\infty} \frac{n^2 x^{n-1}}{n!} = x e^x \] Differentiating again: \[ \sum_{n=1}^{\infty} \frac{n^2}{n!} = e + e = 2e \] ### Step 5: Combine the results Now we can combine the results: \[ S = 2e + e = 3e \] ### Conclusion Thus, the value of the series is: \[ \boxed{3e} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

1/(2.4) +(1.3)/(2.4.6)+(1.3.5)/(2.4.6.8)+.............oo is equal to

What is the value of (2+8i)(1-4i)-(3-2i)(6+4i)?

The value of 4{ C_1 +4. C_2 +4^2 C_3 + ... +4^(n-1)} is

Find the value of 2.2 + 4.08 + 3.125 + 6.3755.

The value of 6+(log)_(3/2)[1/(3sqrt(2)) * sqrt{ (4 - 1/(3sqrt(2))) sqrt(4 - 1/(3sqrt(2))....... } is ...............

Find the value of (-6)/(2/3) options are 1] -9 2] 9 3] -4 4] -4/3

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

If x=4 and y=1, find the value of ((x)/(2)-(y)/(3))((x^(2))/(4)+(xy)/(6)+(y^(2))/(9)) .

Find values of x , if(i) |(2, 4),( 5, 1)|-|(2x,4),( 6,x)| (ii) |(2, 3),( 4, 5)|-|(x,3),( 2x,5)|

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |