Home
Class 12
MATHS
((1 )/(2!) + (1)/(4!) + (1)/(6!) + ........

`((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/(5!) + ......)=`

A

`(1 - e)/(1 + e)`

B

`(e - 1)/(e + 1)`

C

`(e + 1)/(1 - e)`

D

`(e + 1)/(e -1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \frac{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \ldots}{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \ldots} \] ### Step 1: Identify the series in the numerator and denominator The numerator is the sum of the series for even factorials, and the denominator is the sum of the series for odd factorials. ### Step 2: Use the series expansion for \( e^x \) and \( e^{-x} \) Recall the Taylor series expansions: - \( e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \) - \( e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \) ### Step 3: Add \( e^x \) and \( e^{-x} \) Adding these two series gives: \[ e^x + e^{-x} = 2 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \] This series contains only even factorials. ### Step 4: Substitute \( x = 1 \) By substituting \( x = 1 \): \[ e + e^{-1} = 2 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \ldots \] Thus, \[ \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \ldots = \frac{e + e^{-1} - 2}{2} \] ### Step 5: Subtract \( e^x \) and \( e^{-x} \) Now, consider the difference: \[ e^x - e^{-x} = \frac{x}{1!} + \frac{x^3}{3!} + \ldots \] This series contains only odd factorials. ### Step 6: Substitute \( x = 1 \) By substituting \( x = 1 \): \[ e - e^{-1} = \frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \ldots \] Thus, \[ \frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \ldots = e - e^{-1} \] ### Step 7: Substitute the results back into the original expression Now we can substitute these results into the original expression: \[ \frac{\frac{e + e^{-1} - 2}{2}}{e - e^{-1}} \] ### Step 8: Simplify the expression This simplifies to: \[ \frac{e + e^{-1} - 2}{2(e - e^{-1})} \] ### Step 9: Multiply numerator and denominator by \( e \) To simplify further, multiply the numerator and denominator by \( e \): \[ \frac{(e^2 + 1 - 2e)}{2(e^2 - 1)} \] ### Step 10: Factor the numerator and denominator The numerator can be factored as: \[ (e - 1)^2 \] And the denominator can be factored using the difference of squares: \[ (e - 1)(e + 1) \] ### Step 11: Cancel the common terms After canceling \( (e - 1) \): \[ \frac{e - 1}{2(e + 1)} \] ### Final Result Thus, the final result is: \[ \frac{e - 1}{e + 1} \] ### Conclusion The correct answer is option B: \[ \frac{e - 1}{e + 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

(1+1/(2!) + 1/(4!)+ .....)^2 - (1+1/(3!) + 1/(5!)+ .....)^2 =

(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....

(1/(1!)+(1)/(2!)+(1)/(4!)+(1)/(6!)+…)-(1/(1/(1)+(1)/(3!)+(1)/(5!)+…)) is equal to

(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+....

Evaluate: c. 5 (1)/(4) xx 3 (5)/(6) + 1 (3)/(5) div 5 (1)/(3)

(1/(2!)+1/(4!)+1/(6!)+ ....oo)/(1+1/(3!)+1/(5!)+....oo)

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |