Home
Class 12
MATHS
The sum of the series (a + b ) (a - b...

The sum of the series
` (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2))/(2!) + `
` (a+ b) (a-b)(a^(4)+b^(4) +a^(2) b^(2))/(3!) + …"to" oo` lt is equal to

A

(a)`e^(2^(2)) + e^(b^(2))`

B

(b)`e^(a^(2)+b^(2))`

C

(c)`e^(a^(2) -b^(2))`

D

(d)`e^(a^(2))-e^(b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = (a + b)(a - b) + \frac{(a + b)(a - b)(a^2 + b^2)}{2!} + \frac{(a + b)(a - b)(a^4 + b^4 + a^2 b^2)}{3!} + \ldots \] we can break it down step by step. ### Step 1: Identify the first term The first term of the series is: \[ S_1 = (a + b)(a - b) = a^2 - b^2 \] ### Step 2: Identify the second term The second term is: \[ S_2 = \frac{(a + b)(a - b)(a^2 + b^2)}{2!} \] Substituting \( S_1 \): \[ S_2 = \frac{(a^2 - b^2)(a^2 + b^2)}{2!} = \frac{a^4 - b^4}{2!} \] ### Step 3: Identify the third term The third term is: \[ S_3 = \frac{(a + b)(a - b)(a^4 + b^4 + a^2 b^2)}{3!} \] Using \( S_1 \): \[ S_3 = \frac{(a^2 - b^2)(a^4 + b^4 + a^2 b^2)}{3!} \] Expanding: \[ S_3 = \frac{a^6 - b^6}{3!} \] ### Step 4: General term of the series From the pattern observed, we can generalize the \( n \)-th term: \[ S_n = \frac{(a^2 - b^2)(a^{2n} + b^{2n} + a^{2(n-1)}b^2 + \ldots)}{n!} \] This can be simplified to: \[ S_n = \frac{a^{2n} - b^{2n}}{n!} \] ### Step 5: Sum the series Now we can sum the series: \[ S = \sum_{n=1}^{\infty} \frac{a^{2n} - b^{2n}}{n!} \] This can be separated into two series: \[ S = \sum_{n=1}^{\infty} \frac{a^{2n}}{n!} - \sum_{n=1}^{\infty} \frac{b^{2n}}{n!} \] Using the Taylor series expansion for \( e^x \): \[ S = (e^{a^2} - 1) - (e^{b^2} - 1) \] Thus: \[ S = e^{a^2} - e^{b^2} \] ### Final Result The sum of the series is: \[ S = e^{a^2} - e^{b^2} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^(3)+….infty is

Evaluate : (iii) (2a - b) ( 2a + b) (4a^2 + b^2)

Factorise : a-b-4a^(2) + 4b^(2)

The sum of (a)/(a^(2)-b^(2)) and (b)/(a^(2)-b^(2)) is

Find the sum of n terms of the series (a + b) + (a^2 + 2b) + (a^3 + 3b) +.....

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

The product (a+b)(a-b)(a^2-a b+b^2)(a^2+a b+b^2) is equal to: (a) a^6+b^6 (b) a^6-b^6 (c) a^3-b^3 (d) a^3+b^3

Find the compound ratio of : (i) 3a : 2b , 2m : n and 4x : 3y (ii) a- b : a + b , (a + b)^(2) : a^(2) + b^(2) and a^(4) - b^(4): (a^(2) - b^(2))^(2) .

If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x).b^(y), find x + y.

Find the sum of the following series: (a-b)^2+(a^2+b^2)+(a+b)^2+...+[(a+b)^2+6a b]

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |