Home
Class 12
MATHS
sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) ...

`sum_(n=0)^(oo) (n^(2) + n + 1)/((n +1)!)` is equal to

A

2e

B

`2e+1`

C

`2e-1`

D

`1 - 2e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series: \[ S = \sum_{n=0}^{\infty} \frac{n^2 + n + 1}{(n + 1)!} \] ### Step 1: Rewrite the expression We can rewrite the term \( n^2 + n + 1 \) in a more manageable form: \[ n^2 + n + 1 = n(n + 1) + 1 \] Thus, we can express the series as: \[ S = \sum_{n=0}^{\infty} \frac{n(n + 1)}{(n + 1)!} + \sum_{n=0}^{\infty} \frac{1}{(n + 1)!} \] ### Step 2: Simplify the first term The first term can be simplified: \[ \frac{n(n + 1)}{(n + 1)!} = \frac{n}{n!} \] So we have: \[ S = \sum_{n=0}^{\infty} \frac{n}{n!} + \sum_{n=0}^{\infty} \frac{1}{(n + 1)!} \] ### Step 3: Evaluate the first summation The first summation can be evaluated using the property of the exponential function: \[ \sum_{n=0}^{\infty} \frac{n}{n!} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} = \sum_{m=0}^{\infty} \frac{1}{m!} = e \] ### Step 4: Evaluate the second summation The second summation can be rewritten by changing the index: \[ \sum_{n=0}^{\infty} \frac{1}{(n + 1)!} = \sum_{m=1}^{\infty} \frac{1}{m!} = e - 1 \] ### Step 5: Combine the results Now we can combine the results from the two summations: \[ S = e + (e - 1) = 2e - 1 \] ### Final Answer Thus, the value of the infinite series is: \[ \boxed{2e - 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=0)^(oo) ((log_ex)^n)/(n!)

The value of sum_(n=3)^(oo)(1)/(n^(5) - 5n^(3) +4 n) is equal to - (a) (1)/(120) (b) (1 )/(96) (c) (1)/(24) (d) (1)/(144)

sum_(n=1) ^(oo) (1)/((2n-1)!)=

sum_(n=1)^(oo) ((log_ex)^(2n-1))/((2n-1)!)=

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to _______.

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |