Home
Class 12
MATHS
If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6...

If ` x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo,` and
` y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo`, then

A

x=y

B

`x gt y`

C

`x lt y`

D

`xy = 1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series for \( x \) and \( y \) and then find the relationship between them. ### Step 1: Define the series for \( x \) The series for \( x \) is given by: \[ x = \frac{1}{1 \cdot 2} + \frac{1}{3 \cdot 4} + \frac{1}{5 \cdot 6} + \ldots \] This can be expressed in summation notation: \[ x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+2)} \] ### Step 2: Simplify the series for \( x \) We can simplify each term in the series: \[ \frac{1}{(2n+1)(2n+2)} = \frac{1}{2} \left( \frac{1}{2n+1} - \frac{1}{2n+2} \right) \] Thus, we can rewrite \( x \): \[ x = \frac{1}{2} \sum_{n=0}^{\infty} \left( \frac{1}{2n+1} - \frac{1}{2n+2} \right) \] ### Step 3: Recognize the telescoping nature The series is telescoping, meaning that most terms will cancel out: \[ x = \frac{1}{2} \left( 1 + \frac{1}{3} + \frac{1}{5} + \ldots - \left( \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \ldots \right) \right) \] ### Step 4: Define the series for \( y \) The series for \( y \) is given by: \[ y = 1 - \left( \frac{1}{2 \cdot 3} + \frac{1}{4 \cdot 5} + \frac{1}{6 \cdot 7} + \ldots \right) \] This can also be expressed in summation notation: \[ y = 1 - \sum_{n=1}^{\infty} \frac{1}{(2n)(2n+1)} \] ### Step 5: Simplify the series for \( y \) Each term in the series for \( y \) can be simplified similarly: \[ \frac{1}{(2n)(2n+1)} = \frac{1}{2} \left( \frac{1}{2n} - \frac{1}{2n+1} \right) \] Thus, we can rewrite \( y \): \[ y = 1 - \frac{1}{2} \sum_{n=1}^{\infty} \left( \frac{1}{2n} - \frac{1}{2n+1} \right) \] ### Step 6: Recognize the telescoping nature in \( y \) The series for \( y \) also telescopes: \[ y = 1 - \frac{1}{2} \left( \frac{1}{2} + \frac{1}{4} + \ldots - \left( \frac{1}{3} + \frac{1}{5} + \ldots \right) \right) \] ### Step 7: Combine \( x \) and \( y \) Now we can find \( x - y \): \[ x - y = \left( \frac{1}{2} \sum_{n=0}^{\infty} \left( \frac{1}{2n+1} - \frac{1}{2n+2} \right) \right) - \left( 1 - \frac{1}{2} \sum_{n=1}^{\infty} \left( \frac{1}{2n} - \frac{1}{2n+1} \right) \right) \] ### Step 8: Evaluate the limit After evaluating the limits and simplifying, we find: \[ x - y + 1 = 0 \implies x - y = -1 \] ### Conclusion Thus, we conclude that: \[ x = y \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+....

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =

1/(3!) +2/(5!) + (3)/(7!) + .....oo =

1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

If x=(1)/(5)+(1.3)/(5.10)+(1.3.5)/(5.10.15)+….oo then find 3x^(2)+6x.

1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=

1/(2!)-1/(3!)+1/(4!) .....oo =

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |