Home
Class 12
MATHS
The numbers log(180) 12, log(2160) 12, ...

The numbers ` log_(180) 12, log_(2160) 12, log_(25920) 12 ` are in

A

A.P.

B

G.P.

C

H.P.

D

None of the above progressions

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the numbers \( \log_{180} 12, \log_{2160} 12, \log_{25920} 12 \) are in Arithmetic Progression (AP), Geometric Progression (GP), Harmonic Progression (HP), or none of the above, we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the property of logarithms that states \( \log_b a = \frac{\log a}{\log b} \), we can rewrite the logarithms as follows: 1. \( \log_{180} 12 = \frac{\log 12}{\log 180} \) 2. \( \log_{2160} 12 = \frac{\log 12}{\log 2160} \) 3. \( \log_{25920} 12 = \frac{\log 12}{\log 25920} \) ### Step 2: Simplify the logarithms Next, we need to express \( \log 2160 \) and \( \log 25920 \) in terms of \( \log 180 \) and \( \log 12 \): - \( 2160 = 180 \times 12 \) - \( 25920 = 180 \times 12^2 \) Thus, we can compute: 1. \( \log 2160 = \log(180 \times 12) = \log 180 + \log 12 \) 2. \( \log 25920 = \log(180 \times 12^2) = \log 180 + 2\log 12 \) Now we can rewrite the logarithms: 1. \( \log_{180} 12 = \frac{\log 12}{\log 180} \) 2. \( \log_{2160} 12 = \frac{\log 12}{\log 180 + \log 12} \) 3. \( \log_{25920} 12 = \frac{\log 12}{\log 180 + 2\log 12} \) ### Step 3: Check for Arithmetic Progression (AP) For the numbers to be in AP, the condition \( 2b = a + c \) must hold, where \( a = \log_{180} 12 \), \( b = \log_{2160} 12 \), and \( c = \log_{25920} 12 \). Calculating \( b - a \) and \( c - b \): - \( b - a = \frac{\log 12}{\log 180 + \log 12} - \frac{\log 12}{\log 180} \) - \( c - b = \frac{\log 12}{\log 180 + 2\log 12} - \frac{\log 12}{\log 180 + \log 12} \) After simplification, we find that these differences do not yield a constant value, thus they are not in AP. ### Step 4: Check for Geometric Progression (GP) For the numbers to be in GP, the condition \( \frac{b}{a} = \frac{c}{b} \) must hold. Calculating \( \frac{b}{a} \) and \( \frac{c}{b} \): - \( \frac{b}{a} = \frac{\frac{\log 12}{\log 180 + \log 12}}{\frac{\log 12}{\log 180}} = \frac{\log 180}{\log 180 + \log 12} \) - \( \frac{c}{b} = \frac{\frac{\log 12}{\log 180 + 2\log 12}}{\frac{\log 12}{\log 180 + \log 12}} = \frac{\log 180 + \log 12}{\log 180 + 2\log 12} \) After simplification, we find that these ratios are not equal, thus they are not in GP. ### Step 5: Check for Harmonic Progression (HP) For the numbers to be in HP, the reciprocals must be in AP. The reciprocals are: 1. \( \frac{\log 180}{\log 12} \) 2. \( \frac{\log 180 + \log 12}{\log 12} \) 3. \( \frac{\log 180 + 2\log 12}{\log 12} \) We check if: \[ 2 \cdot \frac{\log 180 + \log 12}{\log 12} = \frac{\log 180}{\log 12} + \frac{\log 180 + 2\log 12}{\log 12} \] After simplification, we find that this condition holds true, thus the numbers are in HP. ### Conclusion The numbers \( \log_{180} 12, \log_{2160} 12, \log_{25920} 12 \) are in Harmonic Progression (HP).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

log_3 2, log_6 2, log_12 2 are in

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

The lengths of the sides of a traingle are log_(10)12,log_(10)75andlog_(10)n , where n in N . If a and b are the least ad greatest values of n respectively. The value of b-a is divisible by

Show that log_(3) 9+ log_(3) 3= log_(5) 125

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

Evaluate : (i) log_(125) 625 - log_(16) 64 (ii) log_(16) 32 - log_(25) 125 + log_(9) 27 .

The number N=6^(log_(10)40). 5^(log_(10)36) is a natural number ,Then sum of digits of N is :

The sum of all positive numbers x such that (log_(x)3)(log_(x) 9)+2=5 log_(x) 3 is a value between

There are 3 number a, b and c such that log_(10) a = 5.71, log_(10) b = 6.23 and log_(10) c = 7.89 . Find the number of digits before dicimal in (ab^(2))/c .

log_(4)2-log_(8)2+log_(16)2-....=

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |